Sensors (Basel)
November 2021
Event-based vision sensors show great promise for use in embedded applications requiring low-latency passive sensing at a low computational cost. In this paper, we present an event-based algorithm that relies on an Extended Kalman Filter for 6-Degree of Freedom sensor pose estimation. The algorithm updates the sensor pose event-by-event with low latency (worst case of less than 2 μs on an FPGA).
View Article and Find Full Text PDFWe present the first purely event-based, energy-efficient approach for dynamic object detection and categorization with a freely moving event camera. Compared to traditional cameras, event-based object recognition systems are considerably behind in terms of accuracy and algorithmic maturity. To this end, this paper presents an event-based feature extraction method devised by accumulating local activity across the image frame and then applying principal component analysis (PCA) to the normalized neighborhood region.
View Article and Find Full Text PDF