Publications by authors named "Luca Croin"

Elemental carbon nanomaterials (ECNMs) are redox active agents that can be exploited to purposely modify the redox balance of cells. Both pro- or antioxidant properties have been reported. However, to the best of our knowledge, there are not comprehensive studies exploring both properties on the same material in view of a potential application in medicine.

View Article and Find Full Text PDF

We study electrical transport properties in exfoliated molybdenum disulfide (MoS) back-gated field effect transistors at low drain bias and under different illumination intensities. It is found that photoconductive and photogating effect as well as space charge limited conduction can simultaneously occur. We point out that the photoconductivity increases logarithmically with the light intensity and can persist with a decay time longer than 10 s, due to photo-charge trapping at the MoS/SiO interface and in MoS defects.

View Article and Find Full Text PDF

The detection of quantal exocytic events from neurons and neuroendocrine cells is a challenging task in neuroscience. One of the most promising platforms for the development of a new generation of biosensors is diamond, due to its biocompatibility, transparency and chemical inertness. Moreover, the electrical properties of diamond can be turned from a perfect insulator into a conductive material (resistivity ~mΩ·cm) by exploiting the metastable nature of this allotropic form of carbon.

View Article and Find Full Text PDF

The outstanding electrical and mechanical properties of graphene make it very attractive for several applications, Nanoelectronics above all. However a reproducible and non destructive way to produce high quality, large-scale area, single layer graphene sheets is still lacking. Chemical Vapour Deposition of graphene on Cu catalytic thin films represents a promising method to reach this goal, because of the low temperatures (T < 950°C-1000°C) involved during the process and of the theoretically expected monolayer self-limiting growth.

View Article and Find Full Text PDF