Publications by authors named "Luca Cocconi"

The Szilard engine stands as a compelling illustration of the intricate interplay between information and thermodynamics. While at thermodynamic equilibrium, the apparent breach of the second law of thermodynamics was reconciled by Landauer and Bennett's insights into memory writing and erasure, recent extensions of these concepts into regimes featuring active fluctuations have unveiled the prospect of exceeding Landauer's bound, capitalizing on information to divert free energy from dissipation towards useful work. To explore this question further, we investigate an autonomous dynamic information engine, addressing the thermodynamic consistency of work extraction and measurement costs by extending the phase space to incorporate an auxiliary system, which plays the role of an explicit measurement device.

View Article and Find Full Text PDF

Nonreciprocal interactions are commonplace in continuum-level descriptions of both biological and synthetic active matter, yet studies addressing their implications for time reversibility have so far been limited to microscopic models. Here, we derive a general expression for the average rate of informational entropy production in the most generic mixture of conserved phase fields with nonreciprocal couplings and additive conservative noise. For the particular case of a binary system with Cahn-Hilliard dynamics augmented by nonreciprocal cross-diffusion terms, we observe a nontrivial scaling of the entropy production rate across a parity-time symmetry breaking phase transition.

View Article and Find Full Text PDF

We identify generic protocols achieving optimal power extraction from a single active particle subject to continuous feedback control under the assumption that its spatial trajectory, but not its instantaneous self-propulsion force, is accessible to direct observation. Our Bayesian approach draws on the Onsager-Machlup path integral formalism and is exemplified in the cases of free run-and-tumble and active Ornstein-Uhlenbeck dynamics in one dimension. Such optimal protocols extract positive work even in models characterized by time-symmetric positional trajectories and thus vanishing informational entropy production rates.

View Article and Find Full Text PDF

The steroid hormone 20-hydroxy-ecdysone (20E) promotes proliferation in Drosophila wing precursors at low titer but triggers proliferation arrest at high doses. Remarkably, wing precursors proliferate normally in the complete absence of the 20E receptor, suggesting that low-level 20E promotes proliferation by overriding the default anti-proliferative activity of the receptor. By contrast, 20E needs its receptor to arrest proliferation.

View Article and Find Full Text PDF

We introduce a procedure to test a theory for point particle entity, that is, whether said theory takes into account the discrete nature of the constituents of the system. We then identify the mechanism whereby particle entity is enforced in the context of two field-theoretic frameworks designed to incorporate the particle nature of the degrees of freedom, namely the Doi-Peliti field theory and the response field theory that derives from Dean's equation. While the Doi-Peliti field theory encodes the particle nature at a very fundamental level that is easily revealed, demonstrating the same for Dean's equation is more involved and results in a number of surprising diagrammatic identities.

View Article and Find Full Text PDF

Entropy production plays a fundamental role in the study of nonequilibrium systems by offering a quantitative handle on the degree of time-reversal symmetry breaking. It depends crucially on the degree of freedom considered as well as on the scale of description. How the entropy production at one resolution of the degrees of freedom is related to the entropy production at another resolution is a fundamental question which has recently attracted interest.

View Article and Find Full Text PDF

Locomotion characteristics are often recorded within bounded spaces, a constraint which introduces geometry-specific biases and potentially complicates the inference of behavioural features from empirical observations. We describe how statistical properties of an uncorrelated random walk, namely the steady-state stopping location probability density and the empirical step probability density, are affected by enclosure in a bounded space. The random walk here is considered as a null model for an organism moving intermittently in such a space, that is, the points represent stopping locations and the step is the displacement between them.

View Article and Find Full Text PDF

The rate of entropy production by a stochastic process quantifies how far it is from thermodynamic equilibrium. Equivalently, entropy production captures the degree to which global detailed balance and time-reversal symmetry are broken. Despite abundant references to entropy production in the literature and its many applications in the study of non-equilibrium stochastic particle systems, a comprehensive list of typical examples illustrating the fundamentals of entropy production is lacking.

View Article and Find Full Text PDF

We present a null model to be compared with biological data to test for intrinsic persistence in movement between stops during intermittent locomotion in bounded space with different geometries and boundary conditions. We describe spatio-temporal properties of the sequence of stopping points r,r,r,… visited by a Random Walker within a bounded space. The path between stopping points is not considered, only the displacement.

View Article and Find Full Text PDF

Morphogen gradients provide positional information during development. To uncover the minimal requirements for morphogen gradient formation, we have engineered a synthetic morphogen in wing primordia. We show that an inert protein, green fluorescent protein (GFP), can form a detectable diffusion-based gradient in the presence of surface-associated anti-GFP nanobodies, which modulate the gradient by trapping the ligand and limiting leakage from the tissue.

View Article and Find Full Text PDF