The proper control of mitosis depends on the ubiquitin-mediated degradation of the right mitotic regulator at the right time. This is effected by the Anaphase Promoting Complex/Cyclosome (APC/C) ubiquitin ligase that is regulated by the Spindle Assembly Checkpoint (SAC). The SAC prevents the APC/C from recognising Cyclin B1, the essential anaphase and cytokinesis inhibitor, until all chromosomes are attached to the spindle.
View Article and Find Full Text PDFAssembly of macromolecular complexes at correct cellular sites is crucial for cell function. Nuclear pore complexes (NPCs) are large cylindrical assemblies with eightfold rotational symmetry, built through hierarchical binding of nucleoporins (Nups) forming distinct subcomplexes. Here, we uncover a role of ubiquitin-associated protein 2-like (UBAP2L) in the assembly and stability of properly organized and functional NPCs at the intact nuclear envelope (NE) in human cells.
View Article and Find Full Text PDFMeasuring the dynamics with which the regulatory complexes assemble and disassemble is a crucial barrier to our understanding of how the cell cycle is controlled that until now has been difficult to address. This considerable gap in our understanding is due to the difficulty of reconciling biochemical assays with single cell-based techniques, but recent advances in microscopy and gene editing techniques now enable the measurement of the kinetics of protein-protein interaction in living cells. Here, we apply fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy to study the dynamics of the cell cycle machinery, beginning with Cyclin B1 and its binding to its partner kinase Cdk1 that together form the major mitotic kinase.
View Article and Find Full Text PDFDespite huge efforts towards understanding the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogenesis, little is known about the long-term consequences of the disease. Here, we critically review existing literature about oncogenesis as a potential long-term effect of SARS-CoV-2 infection. Like other viral infections, SARS-CoV-2 may promote cancer onset by inhibiting tumor suppressor genes.
View Article and Find Full Text PDFStress granules (SGs) are membraneless organelles that form in eukaryotic cells after stress exposure [1] (reviewed in [2-4]). Following translation inhibition, polysome disassembly releases 48S preinitiation complexes (PICs). mRNA, PICs, and other proteins coalesce in SG cores [1, 5-7].
View Article and Find Full Text PDFIn animal cells, faithful chromosome segregation depends on the assembly of a bipolar spindle driven by the timely separation of the two centrosomes. Here we took advantage of the highly stereotypical cell divisions in embryos to identify new regulators of centrosome separation. We find that at the two-cell stage, the somatic AB cell initiates centrosome separation later than the germline P1 cell.
View Article and Find Full Text PDFMicrotubules are the backbone of all eukaryotic cells cytoskeleton. Their dynamic behaviour constitutes the basis for many biological processes such as cellular motility, cytoplasmic transport and cell division. Some the most effective chemotherapeutics, such as the taxanes, are microtubule interfering drugs.
View Article and Find Full Text PDFThe mitotic kinase polo like kinase 1 (PLK1) is overexpressed in many cancers and its inhibition slows down proliferation and increases apoptosis in cancer cell lines. Understanding how PLK1 is activated is therefore crucial for the development of novel PLK1 inhibitors with anticancer properties. We recently identified a conserved regulatory loop leading to PLK1 activation that involves cyclin-dependent kinase 1 (CDK1).
View Article and Find Full Text PDFPolo-like kinase 1 (Plk1) is an important mitotic kinase that is crucial for entry into mitosis after recovery from DNA damage-induced cell cycle arrest. Plk1 activation is promoted by the conserved protein Bora (SPAT-1 in C. elegans), which stimulates the phosphorylation of a conserved residue in the activation loop by the Aurora A kinase.
View Article and Find Full Text PDFThe conserved Bora protein is a Plk1 activator, essential for checkpoint recovery after DNA damage in human cells. Here, we show that Bora interacts with Cyclin B and is phosphorylated by Cyclin B/Cdk1 at several sites. The first 225 amino acids of Bora, which contain two Cyclin binding sites and three conserved phosphorylated residues, are sufficient to promote Plk1 phosphorylation by Aurora A in vitro.
View Article and Find Full Text PDFPlatinum-based chemotherapy is widely used to treat various cancers, but many patients ultimately relapse due to drug resistance. We employed phosphoproteomic analysis and functional assays of the response of SK-OV-3 ovarian cancer cells to cisplatin as a strategy to identify kinases as candidate druggable targets to sensitize cells to platinum. A SILAC-based approach combined with TiO2-based phosphopeptide enrichment allowed the direct identification of ERK1/2, p90RSK, and ERBB2 as kinases whose phosphorylation is regulated by cisplatin.
View Article and Find Full Text PDF