High-resolution soil moisture data is crucial in the development of hydrological applications as it provides detailed insights into the spatiotemporal variability of soil moisture. The emergence of advanced remote sensing technologies, alongside the widespread adoption of machine learning, has facilitated the creation of continental and global soil moisture products both at fine spatial (1 km) and temporal (daily) scales. Some of these products rely on several data sources as input (satellite, in situ, modelling), and therefore an evaluation of their actual spatial and temporal resolution is required.
View Article and Find Full Text PDFA reliable and accurate long-term rainfall dataset is an indispensable resource for climatological studies and crucial for application in water resource management, agriculture, and hydrology. SM2RAIN (Soil Moisture to Rain) derived datasets stand out as a unique and wholly independent global product that estimates rainfall from satellite soil moisture observations. Previous studies have demonstrated the SM2RAIN products' high potential in estimating rainfall around the world.
View Article and Find Full Text PDFSatellite precipitation products have been largely improved in the recent years particularly with the launch of the global precipitation measurement (GPM) core satellite. Moreover, the development of techniques for exploiting the information provided by satellite soil moisture to complement/enhance precipitation products have improved the accuracy of accumulated rainfall estimates over land. Such satellite enhanced precipitation products, available with a short latency (< 1 day), represent an important and new source of information for river flow prediction and water resources management, particularly in developing countries in which ground observations are scarcely available and the access to such data is not always ensured.
View Article and Find Full Text PDF