ACS Biomater Sci Eng
February 2024
Cultivated meat production is a promising technology to generate meat while reducing the reliance on traditional animal farming. Biomaterial scaffolds are critical components in cultivated meat production, enabling cell adhesion, proliferation, differentiation, and orientation. In the present work, naturally derived glutenin was fabricated into films with and without surface patterning and in the absence of toxic cross-linking or stabilizing agents for cell culture related to cultivated meat goals.
View Article and Find Full Text PDFShape-memory polymeric materials lack long-range molecular order that enables more controlled and efficient actuation mechanisms. Here, we develop a hierarchical structured keratin-based system that has long-range molecular order and shape-memory properties in response to hydration. We explore the metastable reconfiguration of the keratin secondary structure, the transition from α-helix to β-sheet, as an actuation mechanism to design a high-strength shape-memory material that is biocompatible and processable through fibre spinning and three-dimensional (3D) printing.
View Article and Find Full Text PDFRecent reports suggest the utility of extracellular matrix (ECM) molecules as raw components in scaffolding of engineered materials. However, rapid and tunable manufacturing of ECM molecules into fibrous structures remains poorly developed. Here we report on an immersion rotary jet-spinning (iRJS) method to show high-throughput manufacturing (up to ∼1 g/min) of hyaluronic acid (HA) and other ECM fiber scaffolds using different spinning conditions and postprocessing modifications.
View Article and Find Full Text PDFBioprocessing applications that derive meat products from animal cell cultures require food-safe culture substrates that support volumetric expansion and maturation of adherent muscle cells. Here we demonstrate scalable production of microfibrous gelatin that supports cultured adherent muscle cells derived from cow and rabbit. As gelatin is a natural component of meat, resulting from collagen denaturation during processing and cooking, our extruded gelatin microfibers recapitulated structural and biochemical features of natural muscle tissues.
View Article and Find Full Text PDFOrganic fluorophores, particularly stimuli-responsive molecules, are very interesting for biological and material sciences applications, but frequently limited by aggregation- and rotation-caused photoluminescence quenching. A series of easily accessible bipyridinium fluorophores, whose emission is quenched by a twisted intramolecular charge-transfer (TICT) mechanism, is reported. Encapsulation in a cucurbit[7]uril host gave a 1:1 complex exhibiting a moderate emission increase due to destabilization of the TICT state inside the apolar cucurbituril cavity.
View Article and Find Full Text PDFSelf-organization in synthetic chemical systems is quickly developing into a powerful strategy for designing new functional materials. As self-organization requires the system to exist far from thermodynamic equilibrium, chemists have begun to go beyond the classical equilibrium self-assembly that is often applied in bottom-up supramolecular synthesis, and to learn about the surprising and unpredicted emergent properties of chemical systems that are characterized by a higher level of complexity and extended reactivity networks. The present review focuses on self-organization in reaction-diffusion systems.
View Article and Find Full Text PDFA hybrid tris-bidentate neutral ligand (L) composed of a central 2,2'-bipyridine and two terminal triazolyl-pyridine chelating units connected by methylene spacers is employed to synthesize trinuclear triple-stranded side-by-side helicates of first-row transition-metal(II) ions. Three such new homometallic helicates LM(OTf) [ M = Cu (4); Ni (5); Co (6)], along with our recently reported helicates LFe(OTf) (1), LZn(OTf) (2), and LFeZn(OTf) (3) are taken into consideration for competitive formation and transmetalation studies. Single-crystal X-ray structures of LCu(OTf) (4) and LNi(OTf) (5) show the formation of trinuclear triple-stranded side-by-side helicates with alternating Λ and Δ chiralities at the metal ions as earlier observed in cases of LFe(OTf) (1), LZn(OTf) (2), and LFeZn(OTf) (3).
View Article and Find Full Text PDFGrowth of rigid rods occurs via supramolecular assembly of a nonconjugated π-donor π-acceptor monomer and is triggered by a NaCl gradient. The mechanical stiffness of this material is controlled by the local salt concentration and is ion specific. The continuous and well-controlled growth process is exploited to power the directional transport of sub-millimeter polymer particles.
View Article and Find Full Text PDFWe present an operationally simple iterative coupling strategy for the synthesis of oligomeric homo- and hetero[n]rotaxanes with precise control over the position of each macrocycle. The exceptional yield of the AT-CuAAC reaction, combined with optimized conditions that allow the rapid synthesis of the target oligomers, opens the door to the study of precision-engineered oligomeric interlocked molecules.
View Article and Find Full Text PDFA novel linear hybrid tris-bidentate neutral ligand having 2,2'-bipyridine and two terminal triazolylpyridine coordination sites (L) was efficiently synthesized and explored in the synthesis of trinuclear triple-stranded homometallic side-by-side helicates L3Fe3(OTf)6 (1) and L3Zn3(OTf)6 (2), in which the three metal centers display alternating Λ and Δ configurations. Selective formation of the analogous heterometallic side-by-side helicate L3Fe2Zn(OTf)6 (3) was achieved from a mixture of L, Fe(CH3CN)2(OTf)2, and Zn(OTf)2 (1:1:1) in acetonitrile at room temperature. Various analytical techniques, i.
View Article and Find Full Text PDFThe high vacuum inside a mass spectrometer offers unique conditions to broaden our view on the reactivity of supramolecules. Because dynamic exchange processes between complexes are efficiently suppressed, the intrinsic and intramolecular reactivity of the complexes of interest is observed. Besides this, the significantly higher strength of non-covalent interactions in the absence of competing solvent allows processes to occur that are unable to compete in solution.
View Article and Find Full Text PDF