The development of novel, efficient and cost-effective emitters for solid-state lighting devices (SSLDs) is ubiquitous to meet the increasingly demanding needs of advanced lighting technologies. In this context, the emergence of thermally activated delayed fluorescence (TADF) materials has stunned the photonics community. In particular, inorganic TADF material-based compounds can be engineered by chemical modification of the coordinated ligands and the type of metal centre, allowing control of their ultimate photo-/electroluminescence properties, while providing a viable emitter platform for enhancing the efficiency of state-of-the-art organic light-emitting diodes (OLEDs) and light-emitting electrochemical cells (LECs).
View Article and Find Full Text PDFStable and efficient green hybrid light-emitting diodes (HLEDs) were fabricated from a highly emissive Mg(II)-tetraphenyl ethylene derivative metal-organic framework embedded in a polystyrene matrix (Mg-TBC MOF@PS). The photoluminescence quantum yield (ϕ) of the material, >80%, remains constant upon polymer embedment. The resulting HLEDs featured high luminous efficiencies of >50 lm W and long lifetimes of >380 h, making them among the most stable MOF-based HLEDs.
View Article and Find Full Text PDFA π-expanded X-type double [5]helicene comprising dihydropyracylene moieties was synthesized from commercially available acenaphthene. X-ray crystallographic analysis revealed the unique highly twisted structure of the compound resulting in the occurrence of two enantiomers which were separated by chiral HPLC, owing to their high conformational stability. The compound shows strongly bathochromically shifted UV/vis absorption and emission bands with small Stokes shift and considerable photoluminescence quantum yield and circular polarized luminescence response.
View Article and Find Full Text PDFBackground: Cystic fibrosis (CF), which is caused by mutations in the CF transmembrane conductance regulator (CFTR), is characterised by chronic bacterial lung infection and inflammation. In CF, monocytes and monocyte-derived macrophages have been shown to display defective phagocytosis and antimicrobial activity against relevant lung pathogens, including . Thus, we addressed the effect of CFTR triple modulator therapy (elexacaftor/tezacaftor/ivacaftor (ETI)) on the activity of CF monocytes against .
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2022
This work describes the design and synthesis of a π-conjugated telluro[3,2-β][1]-tellurophene-based synthon that, embodying pyridyl and haloaryl chalcogen-bonding acceptors, self-assembles into nanoribbons through chalcogen bonds. The ribbons π-stack in a multi-layered architecture both in single crystals and thin films. Theoretical studies of the electronic states of chalcogen-bonded material showed the presence of a local charge density between Te and N atoms.
View Article and Find Full Text PDFWhite light-emitting electrochemical cells (LECs) comprising only [Cu(N^N)(P^P)] have not been reported yet, as all the attempts toward blue-emitting complexes failed. Multivariate analysis, based on prior-art [Cu(N^N)(P^P)] -based thin-film lighting (>90 papers) and refined with computational calculations, identifies the best blue-emitting [Cu(N^N)(P^P)] design for LECs, that is, N^N: 2-(4-(tert-butyl)phenyl)-6-(3,5-dimethyl-1H-pyrazol-1-yl)pyridine and P^P: 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene, to achieve predicted thin-film emission at 490 nm and device performance of 3.8 cd A @170 cd m .
View Article and Find Full Text PDFIn recent years, extracellular vesicles (EVs), cell-derived micro and nano-sized structures enclosed in a double-layer membrane, have been in the spotlight for their high potential in diagnostic and therapeutic applications. Indeed, they act as signal mediators between cells and/or tissues through different mechanisms involving their complex cargo and exert a number of biological effects depending upon EVs subtype and cell source. Being produced by almost all cell types, they are found in every biological fluid including milk.
View Article and Find Full Text PDFColistin is a last-resort antibiotic for the treatment of multidrug resistant Gram-negative bacterial infections. Recently, a natural -beyerene diterpene was identified as a promising inhibitor of the enzyme responsible for colistin resistance mediated by lipid A aminoarabinosylation in Gram-negative bacteria, namely, ArnT (undecaprenyl phosphate-alpha-4-amino-4-deoxy-l-arabinose arabinosyl transferase). Here, semisynthetic analogues of hit were designed, synthetized, and tested against colistin-resistant strains including clinical isolates to exploit the versatility of the diterpene scaffold.
View Article and Find Full Text PDFJ Antimicrob Chemother
September 2020
Background: Colistin is a last-resort treatment option for many MDR Gram-negative bacteria. The covalent addition of l-aminoarabinose to the lipid A moiety of LPS is the main colistin resistance mechanism in the human pathogen Pseudomonas aeruginosa.
Objectives: Identification (by in silico screening of a chemical library) of potential inhibitors of ArnT, which catalyses the last committed step of lipid A aminoarabinosylation, and their validation in vitro as colistin adjuvants.
Reactive oxygen species (ROS) are small oxygen-derived molecules that are used to control infections by phagocytic cells. In macrophages, the oxidative burst produced by the NOX2 NADPH-oxidase is essential to eradicate engulfed pathogens by both oxidative and non-oxidative killing. Indeed, while the superoxide anion ( ) produced by NOX2, and the other ROS derived from its transformation, can directly target pathogens, ROS also contribute to activation of non-oxidative microbicidal effectors.
View Article and Find Full Text PDFCystic fibrosis (CF) is an inherited disease that is characterised by susceptibility to bacterial infections and chronic lung inflammation. Recently, it was suggested that macrophages contribute to impaired host defence and excessive inflammatory responses in CF. Indeed, dysfunction attributed to CF macrophages includes decreased bacterial killing and exaggerated inflammatory responses.
View Article and Find Full Text PDFImproving the efficacy of gene therapy vectors is still an important goal toward the development of safe and efficient gene therapy treatments. S/MAR (scaffold/matrix attached region)-based vectors are maintained extra-chromosomally in numerous cell types, which is similar to viral-based vectors. Additionally, when established as an episome, they show a very high mitotic stability.
View Article and Find Full Text PDF