Publications by authors named "Luca Catarinucci"

In this work, the application in Radiofrequency Identification (RFID) of different additive manufacturing (AM) 3D-printing technologies is discussed. In particular, the well-known Fused Deposition Modeling (FDM) technology is compared with the promising Digital Light Processing (DLP), which is based on the photopolymerization of liquid resins. Based on the research activity of the authors on this topic, a brief introduction to the fundamentals of 3D-printing in electromagnetics as well as to the different applications of both FDM and DLP in realizing Radio Frequency (RF) devices, is firstly given.

View Article and Find Full Text PDF

Evaluating the behavior of mice and rats has substantially contributed to the progress of research in many scientific fields. Researchers commonly observe recorded video of animal behavior and manually record their observations for later analysis, but this approach has several limitations. The authors developed an automated system for tracking and analyzing the behavior of rodents that is based on radio frequency identification (RFID) in an ultra-high-frequency bandwidth.

View Article and Find Full Text PDF

Along with the growing of the aging population and the necessity of efficient wellness systems, there is a mounting demand for new technological solutions able to support remote and proactive healthcare. An answer to this need could be provided by the joint use of the emerging Radio Frequency Identification (RFID) technologies and advanced software choices. This paper presents a proposal for a context-aware infrastructure for ubiquitous and pervasive monitoring of heterogeneous healthcare-related scenarios, fed by RFID-based wireless sensors nodes.

View Article and Find Full Text PDF

Radio Frequency Identification (RFID) technology is playing a crucial role for item-level tracing systems in healthcare scenarios. The pharmaceutical supply chain is a fascinating application context, where RFID can guarantee transparency in the drug flow, supporting both suppliers and consumers against the growing counterfeiting problem. In such a context, the choice of the most adequate RFID tag, in terms of shape, frequency, size and reading range, is crucial.

View Article and Find Full Text PDF

The finite difference time domain method (FDTD) is frequently used for the numerical solution of a wide variety of electromagnetic (EM) problems and, among them, those concerning human exposure to EM fields. In many practical cases related to the assessment of occupational EM exposure, large simulation domains are modeled and high space resolution adopted, so that strong memory and central processing unit power requirements have to be satisfied. To better afford the computational effort, the use of parallel computing is a winning approach; alternatively, subgridding techniques are often implemented.

View Article and Find Full Text PDF