Publications by authors named "Luca Capua"

Background And Aim: The aim of the present study was to evaluate the prevalence and to identify the independent predictors of multi-drug resistance among a cohort of patients admitted to emergency department for urinary tract infections (UTI), and to assess the impact of antimicrobial resistance on the clinical outcomes.

Methods: We conducted a prospective multicentre study enrolling all adult patients admitted to one of the eight emergency departments participating in the study with a microbiologically confirmed diagnosis of UTI from February 2023 to July 2024. The primary outcome evaluated was 30-day mortality; secondary outcomes included 7-day mortality and clinical response.

View Article and Find Full Text PDF

In this paper, we propose a novel approach to utilize silicon nanowires as high-sensitivity pH sensors. Our approach works based on fixing the current bias of silicon nanowires Ion Sensitive Field Effect Transistors (ISFETs) and monitor the resulting drain voltage as the sensing signal. By fine tuning the injected current levels, we can optimize the sensing conditions according to different sensor requirements.

View Article and Find Full Text PDF

Aims: The purpose of this study was to assess the value of genetic testing in addition to a comprehensive clinical evaluation, as part of the diagnostic work-up of elite and/or amateur Italian athletes referred for suspicion of inherited cardiac disease, following a pre-participation screening programme.

Methods: Between January 2009-December 2018, of 5892 consecutive participants, 61 athletes were investigated: 30 elite and 31 amateur athletes. Elite and amateur athletes were selected, on the basis of clinical suspicion for inherited cardiac disease, from two experienced centres for a comprehensive cardiovascular evaluation.

View Article and Find Full Text PDF

Cortisol is a hormone released in response to stress and is a major glucocorticoid produced by adrenal glands. Here, we report a wearable sensory electronic chip using label-free detection, based on a platinum/graphene aptamer extended gate field effect transistor (EG-FET) for the recognition of cortisol in biological buffers within the Debye screening length. The device shows promising experimental features for real-time monitoring of the circadian rhythm of cortisol in human sweat.

View Article and Find Full Text PDF