Publications by authors named "Luca Bertini"

Laccases that oxidize low-density polyethylene (LDPE) represent a promising strategy for bioremediation purposes. To rationalize or optimize their PE-oxidative activity, two fundamental factors must be considered: the enzyme's redox potential and its binding affinity/mode towards LDPE. Indeed, a stable laccase-PE complex may facilitate a thermodynamically unfavorable electron transfer, even without redox mediators.

View Article and Find Full Text PDF

Thyroxine, the main hormone product of the thyroid, is produced at multiple sites within its protein precursor thyroglobulin. Each site consists of two tyrosine residues which undergo iodination and coupling, resulting in the synthesis of thyroxine at the acceptor tyrosine, where the hormone synthesis is later completed by proteolysis. Within the structurally resolved sites, the role of an essential conserved acidic residue preceding the acceptor remains elusive.

View Article and Find Full Text PDF

Telomeric G-quadruplexes (G4s) are non-canonical DNA structures composed of TTAGGG repeats. They are extensively studied both as biomolecules key for genome stability and as promising building blocks and functional elements in synthetic biology and nanotechnology. This is why it is extremely important to understand how the interaction between G4s is affected by their topology.

View Article and Find Full Text PDF

Human telomeres (HTs) can form DNA G-quadruplex (G4), an attractive target for anticancer and antiviral drugs. HT-G4s exhibit inherent structural polymorphism, posing challenges for understanding their specific recognition by ligands. Here, we aim to explore the impact of different topologies within a small segment of the HT (Tel22) on its interaction with BRACO19, a rationally designed G4 ligand with high quadruplex affinity, already employed in in-vivo treatments.

View Article and Find Full Text PDF

Flavodoxins are enzymes that contain the redox-active flavin mononucleotide (FMN) cofactor and play a crucial role in numerous biological processes, including energy conversion and electron transfer. Since the redox characteristics of flavodoxins are significantly impacted by the molecular environment of the FMN cofactor, the evaluation of the interplay between the redox properties of the flavin cofactor and its molecular surroundings in flavoproteins is a critical area of investigation for both fundamental research and technological advancements, as the electrochemical tuning of flavoproteins is necessary for optimal interaction with redox acceptor or donor molecules. In order to facilitate the rational design of biomolecular devices, it is imperative to have access to computational tools that can accurately predict the redox potential of both natural and artificial flavoproteins.

View Article and Find Full Text PDF

G-quadruplexes (G4s) are helical four-stranded structures forming from guanine-rich nucleic acid sequences, which are thought to play a role in cancer development and malignant transformation. Most current studies focus on G4 monomers, yet under suitable and biologically relevant conditions, G4s undergo multimerization. Here, we investigate the stacking interactions and structural features of telomeric G4 multimers by means of a novel low-resolution structural approach that combines small-angle X-ray scattering (SAXS) with extremely coarse-grained (ECG) simulations.

View Article and Find Full Text PDF

Molecular modeling techniques have become indispensable in many fields of molecular sciences in which the details related to mechanisms and reactivity need to be studied at an atomistic level. This review article provides a collection of computational modeling works on a topic of enormous interest and urgent relevance: the properties of metalloenzymes involved in the degradation and valorization of natural biopolymers and synthetic plastics on the basis of both circular biofuel production and bioremediation strategies. In particular, we will focus on lytic polysaccharide monooxygenase, laccases, and various heme peroxidases involved in the processing of polysaccharides, lignins, rubbers, and some synthetic polymers.

View Article and Find Full Text PDF

Telomeric G-quadruplexes (G4s) are promising targets in the design and development of anticancer drugs. Their actual topology depends on several factors, resulting in structural polymorphism. In this study, we investigate how the fast dynamics of the telomeric sequence AG3(TTAG3)3 (Tel22) depends on the conformation.

View Article and Find Full Text PDF

Background: To investigate the predictive role of dynamic contrast-enhanced-magnetic resonance imaging (DCE-MRI) findings before salvage radiotherapy after radical prostatectomy (RP).

Methods: This retrospective study selected patients with biochemical failure (BF) after RP restaged with DCE-MRI. Patients underwent sRT in 30 fractions delivering 66-69 Gy and 73.

View Article and Find Full Text PDF

G-quadruplexes (G4s) formed by the human telomeric sequence AG (TTAG) (Tel22) play a key role in cancer and aging. We combined elastic incoherent neutron scattering (EINS) and quasielastic incoherent neutron scattering (QENS) to characterize the internal dynamics of Tel22 G4s and to assess how it is affected by complexation with two standard ligands, Berberine and BRACO19. We show that the interaction with the two ligands induces an increase of the overall mobility of Tel22 as quantified by the mean squared displacements (MSD) of hydrogen atoms.

View Article and Find Full Text PDF

This work originated from the need to functionalize surfactant-coated inorganic nanoparticles for biomedical applications, a process that is limited by excess unbound surfactant. These limitations are connected to the bioconjugation of targeting molecules that are often in equilibrium between the free aliquot in solution and that which binds the surface of the nanoparticles. The excess in solution can play a role in the biocompatability and of the final nanoparticles stock.

View Article and Find Full Text PDF

De novo metalloprotein design is a remarkable approach to shape protein scaffolds toward specific functions. Here, we report the design and characterization of Due Rame 1 (DR1), a de novo designed protein housing a di-copper site and mimicking the Type 3 (T3) copper-containing polyphenol oxidases (PPOs). To achieve this goal, we hierarchically designed the first and the second di-metal coordination spheres to engineer the di-copper site into a simple four-helix bundle scaffold.

View Article and Find Full Text PDF

Background: To assess the pattern of response of presumed local lesions at dynamic contrast enhancement magnetic resonance imaging (DCE-MRI) after salvage radiotherapy (sRT).

Methods: This is a prospective study conducted at a single Institution accruing patients with one or more local failures at DCE-MRI after radical prostatectomy between August 2017 and June 2020. Patients underwent exclusive sRT delivering 66-69 Gy and 73.

View Article and Find Full Text PDF

Ion pairing in water solutions alters both the water hydrogen-bond network and ion solvation, modifying the dynamics and properties of electrolyte water solutions. Here, we report an anomalous intrinsic fluorescence of KCl aqueous solution at room temperature and show that its intensity increases with the salt concentration. From the ab initio density functional theory (DFT) and time-dependent DFT modeling, we propose that the fluorescence emission could originate from the stiffening of the hydrogen bond network in the hydration shell of solvated ion-pairs that suppresses the fast nonradiative decay and allows the slower radiative channel to become a possible decay pathway.

View Article and Find Full Text PDF

Background: We aimed assess the detection rate (DR) of positron emission tomography/computed tomography with two novel tracers in patients referred for salvage radiotherapy (sRT) with a presumed local recurrence at multiparametric magnetic resonance (mpMR) after radical prostatectomy (RP).

Methods: The present prospective study was conducted at a single institution between August 2017 and June 2020. Eligibility criteria were undetectable PSA after RP; subsequent biochemical recurrence (two consecutive PSA rises to 0.

View Article and Find Full Text PDF

Background: The aim of this study was to investigate the impact of computer aided diagnostic (CAD) system on the detection rate of prostate cancer (PCa) in a series of fusion prostate biopsy (FPB).

Methods: Two prospective transperineal FPB series (with or without CAD assistance) were analyzed and PCa detection rates compared with per-patient and per-target analyses. The χ and Mann-Whitney test were used to compare categorical and continuous variables, respectively.

View Article and Find Full Text PDF

Oxidative stress and metal dyshomeostasis are considered as crucial factors in the pathogenesis of Alzheimer's disease (AD). Indeed, transition metal ions such as Cu(ii) can generate Reactive Oxygen Species (ROS) via O Fenton-like reduction, catalyzed by Cu(ii) coordinated to the Amyloid beta (Aβ) peptide. Despite intensive effort, the mechanisms of ROS-induced molecular damage remain poorly understood.

View Article and Find Full Text PDF

It was recently discovered that some redox proteins can thermodynamically and spatially split two incoming electrons towards different pathways, resulting in the one-electron reduction of two different substrates, featuring reduction potential respectively higher and lower than the parent reductant. This energy conversion process, referred to as electron bifurcation, is relevant not only from a biochemical perspective, but also for the ground-breaking applications that electron-bifurcating molecular devices could have in the field of energy conversion. Natural electron-bifurcating systems contain a two-electron redox centre featuring potential inversion (PI), i.

View Article and Find Full Text PDF

Objective: To assess the predictive role of response on dynamic contrast enhancement on magnetic resonance imaging (DCE-MRI) of visible local lesions in the setting of salvage radiotherapy (sRT) after radical prostatectomy.

Methods: All patients referred for sRT for biochemical failure after radical prostatectomy from February 2014 to September 2016 were considered eligible if they had been restaged with DCE-MRI and had been found to have a visible lesion in the prostatic bed, but no distant/nodal disease on choline positron emission tomography (PET)-computed tomography (CT). Eligible patients were contacted during follow-up and offered reimaging with serial DCE-MRI until lesion resolution.

View Article and Find Full Text PDF

Introduction: Retroperitoneal Follicular Dendritic Cell Sarcomas represents rare tumours with aggressive biologic behaviour. Accurate diagnosis requires a combination of both morphological and immunohistochemical analyses.

Patients And Methods: A 61-year-old man was referred to our Department with a left perinephric mass.

View Article and Find Full Text PDF

The unique properties of liquid water mainly arise from its hydrogen bond network. The geometry and dynamics of this network play a key role in shaping the characteristics of soft matter, from simple solutions to biosystems. Here we report an anomalous intrinsic fluorescence of HCl and NaOH aqueous solutions at room temperature that shows important differences in the excitation and emission bands between the two solutes.

View Article and Find Full Text PDF

Catalytic H oxidation has been dissected by means of DFT into the key steps common to the Fe unit of both the [FeFe]-hydrogenase cofactor and selected biomimics. The aim was to elucidate the molecular details underlying the very different performances of the two systems. We found that the better enzyme performance is based on a single iron atom that is maintained electron-poor, favoring H binding, although embedded within a highly electron-rich cofactor, ensuring a facile oxidation of the Fe -H adduct.

View Article and Find Full Text PDF

Alzheimer's disease (AD) involves a number of factors including an anomalous interaction of copper with the amyloid peptide (Aβ), inducing oxidative stress with radical oxygen species (ROS) production through a three-step cycle in which O2 is gradually reduced to superoxide, oxygen peroxide and finally OH radicals. The purpose of this work has been to investigate the reactivity of 14 different Cu(ii)-Aβ coordination models with the aim of identifying on an energy basis (Density Functional Theory (DFT) and classical Molecular Dynamics (MD)) the redox competent form(s). Accordingly, we have specifically focused on the first three steps of the cycle, i.

View Article and Find Full Text PDF