Publications by authors named "Luc-Alain Giraldeau"

Recent studies have emphasized the role of social learning and cultural transmission in promoting conformity and uniformity in animal groups, but little attention has been given to the role of negative frequency-dependent learning in impeding conformity and promoting diversity instead. Here, we show experimentally that under competitive conditions that are common in nature, social foragers (although capable of social learning) are likely to develop diversity in foraging specialization rather than uniformity. Naive house sparrows that were introduced into groups of foraging specialists did not conform to the behaviour of the specialists, but rather learned to use the alternative food-related cues, thus forming groups of complementary specialists.

View Article and Find Full Text PDF

This study investigated whether young children's conformity to a consensus varies across the normative domain and age. A total of 168 3- and 5-year-olds participated. Each child was presented with a puzzle box that had two transparent compartments.

View Article and Find Full Text PDF

Culture evolution requires both modification and faithful replication of behaviour, thus it is essential to understand how individuals choose between social and asocial learning. In a quasi-experimental design, 3- and 5-year-olds (176), and adults (52) were presented individually with two novel artificial fruits, and told of the apparatus' relative difficulty (easy versus hard). Participants were asked if they wanted to attempt the task themselves or watch an experimenter attempt it first; and then had their preference either met or violated.

View Article and Find Full Text PDF

INDIVIDUALS FROM THE SAME POPULATION GENERALLY VARY IN SUITES OF CORRELATED BEHAVIORAL TRAITS: personality. Yet, the strength of the behavioral correlations sometimes differs among populations and environmental conditions, suggesting that single underlying mechanisms, such as genetic constraints, cannot account for them. We propose, instead, that such suites of correlated traits may arise when a single key behavior has multiple cascading effects on several other behaviors through affecting the range of options available.

View Article and Find Full Text PDF

Individuals foraging in groups can use two different tactics for obtaining food resources. Individuals can either search for food sources themselves (producing) or they can join food discoveries of others (scrounging). In this study we use a genetic algorithm in a spatially explicit producer-scrounger game to explore how individuals compromise between exploration (an important axis of animal personality) and scrounging and how characteristics of the environment affect this compromise.

View Article and Find Full Text PDF

Although natural selection should have favoured individuals capable of adjusting the weight they give to personal and social information according to circumstances, individuals generally differ consistently in their individual weighting of both types of information. Such individual differences are correlated with personality traits, suggesting that personality could directly affect individuals' ability to collect personal or social information. Alternatively, the link between personality and information use could simply emerge as a by-product of the sequential decision-making process in a frequency-dependent context.

View Article and Find Full Text PDF

Research on social learning has focused traditionally on whether animals possess the cognitive ability to learn novel motor patterns from tutors. More recently, social learning has included the use of others as sources of inadvertent social information. This type of social learning seems more taxonomically widespread and its use can more readily be approached as an economic decision.

View Article and Find Full Text PDF

Background: Successful foraging is essential for survival and reproductive success. In many bird species, foraging is a learned behaviour. To cope with environmental change and survive periods in which regular foods are scarce, the ability to solve novel foraging problems by learning new foraging techniques can be crucial.

View Article and Find Full Text PDF

When engaged in behavioural games, animals can adjust their use of alternative tactics until groups reach stable equilibria. Recent theory on behavioural plasticity in games predicts that individuals should differ in their plasticity or responsiveness and hence in their degree of behavioural adjustment. Moreover, individuals are predicted to be consistent in their plasticity within and across biological contexts.

View Article and Find Full Text PDF

Behavioural decisions in a social context commonly have frequency-dependent outcomes and so require analysis using evolutionary game theory. Learning provides a mechanism for tracking changing conditions and it has frequently been predicted to supplant fixed behaviour in shifting environments; yet few studies have examined the evolution of learning specifically in a game-theoretic context. We present a model that examines the evolution of learning in a frequency-dependent context created by a producer-scrounger game, where producers search for their own resources and scroungers usurp the discoveries of producers.

View Article and Find Full Text PDF

Background: Altruistic anti-predatory behaviours pose an evolutionary problem because they are costly to the actor and beneficial to the recipients. Altruistic behaviours can evolve through indirect fitness benefits when directed toward kin. The altruistic nature of anti-predatory behaviours is often difficult to establish because the actor can obtain direct fitness benefits, or the behaviour could result from selfish coercion by others, especially in eusocial animals.

View Article and Find Full Text PDF

Humans and other animals do not use social learning indiscriminately, rather, natural selection has favoured the evolution of social learning rules that make selective use of social learning to acquire relevant information in a changing environment. We present a gene-culture coevolutionary analysis of a small selection of such rules (unbiased social learning, payoff-biased social learning and frequency-dependent biased social learning, including conformism and anti-conformism) in a population of asocial learners where the environment is subject to a constant probability of change to a novel state. We define conditions under which each rule evolves to a genetically polymorphic equilibrium.

View Article and Find Full Text PDF

Optimal diet theory often fails to predict a forager's diet choice when prey are mobile. Because they escape or defend themselves, mobile prey are likely to increase the forager's handling time, thereby decreasing its fitness gain rate. Many animals have been shown to select their prey so as to maximize either their fitness gain or their fitness gain rate.

View Article and Find Full Text PDF

Information is a crucial currency for animals from both a behavioural and evolutionary perspective. Adaptive behaviour relies upon accurate estimation of relevant ecological parameters; the better informed an individual, the better it can develop and adjust its behaviour to meet the demands of a variable world. Here, we focus on the burgeoning interest in the impact of ecological uncertainty on adaptation, and the means by which it can be reduced by gathering information, from both 'passive' and 'responsive' sources.

View Article and Find Full Text PDF

Several species use the number of young produced as public information (PI) to assess breeding site quality. PI is inaccessible for synchronously breeding birds because nests are empty by the time the young can collect this information. We investigate if location cues are the next best source of inadvertent social information (ISI) used by young prospectors during breeding site choice.

View Article and Find Full Text PDF

Hawk-dove games have been extensively used to predict the conditions under which group-living animals should defend their resources against potential usurpers. Typically, game-theoretic models on aggression consider that resource defense may entail energetic and injury costs. However, intruders may also take advantage of owners who are busy fighting to sneak access to unguarded resources, imposing thereby an additional cost on the use of the escalated hawk strategy.

View Article and Find Full Text PDF

Psychologists, economists, and advertising moguls have long known that human decision-making is strongly influenced by the behavior of others. A rapidly accumulating body of evidence suggests that the same is true in animals. Individuals can use information arising from cues inadvertently produced by the behavior of other individuals with similar requirements.

View Article and Find Full Text PDF

Behavioral ecology, the study of the survival value or function of behavior, has developed for a time by confining cognition to convenient black boxes that were assumed to be rigged by natural selection to direct an animal to the right decision for a given set of circumstances. However, the interpretation of test results concerning functional hypotheses about behavior depends crucially on assumptions made about their ability to collect and process information: cognition. Clearly, progress in behavioral ecology requires that the cognitive black boxes be opened and studied.

View Article and Find Full Text PDF

Although many variants of the hawk-dove game predict the frequency at which group foraging animals should compete aggressively, none of them can explain why a large number of group foraging animals share food clumps without any overt aggression. One reason for this shortcoming is that hawk-dove games typically consider only a single contest, while most group foraging situations involve opponents that interact repeatedly over discovered food clumps. The present iterated hawk-dove game predicts that in situations that are analogous to a prisoner's dilemma, animals should share the resources without aggression, provided that the number of simultaneously available food clumps is sufficiently large and the number of competitors is relatively small.

View Article and Find Full Text PDF

Group feeding animals experience a number of competitive foraging costs that may result in a lowered feeding rate. It is important to distinguish between reductions in feeding rates that are caused by reduced food availability and physical interactions among foragers from those caused by the mere presence of foraging companions that may be self-imposed in order to obtain some benefit of group membership. Starlings ( Sturnus vulgaris) reduce their feeding rates when in the company of simulated competitors located in an adjacent cage that cannot affect the food availability or interact with the forager.

View Article and Find Full Text PDF

The acquisition and use of socially acquired information is commonly assumed to be profitable. We challenge this assumption by exploring hypothetical scenarios where the use of such information either provides no benefit or can actually be costly. First, we show that the level of incompatibility between the acquisition of personal and socially acquired information will directly affect the extent to which the use of socially acquired information can be profitable.

View Article and Find Full Text PDF

We summarize 20 years of empirical and theoretical research on causes and functions of social influences on foraging by animals. We consider separately studies of social influence on when, where, what and how to eat. Implicit in discussion of the majority of studies is our assumption that social influences on foraging reflect a biasing of individual learning processes by social stimuli rather than action of independent social-learning mechanisms.

View Article and Find Full Text PDF

Feeding in groups often gives rise to joining: feeding from other's discoveries. The joining decision has been modeled as a producer-scrounger game where the producer strategy consists of searching for one's food and the scrounger strategy consists of searching for food discovered by others. Previous models revealed that the evolutionarily stable proportion of scrounging mostly depends on the fraction of each food patch available only to its producer.

View Article and Find Full Text PDF