Quantum spin liquids are exotic states of matter that form when strongly frustrated magnetic interactions induce a highly entangled quantum paramagnet far below the energy scale of the magnetic interactions. Three-dimensional cases are especially challenging due to the significant reduction of the influence of quantum fluctuations. Here, we report the magnetic characterization of K_{2}Ni_{2}(SO_{4})_{3} forming a three-dimensional network of Ni^{2+} spins.
View Article and Find Full Text PDF