CXC chemokine receptor CXCR3 and/or its main three ligands CXCL9, CXCL10, and CXCL11 are highly upregulated in a variety of diseases. As such, considerable efforts have been made to develop small-molecule receptor CXCR3 antagonists, yielding distinct chemical classes of antagonists blocking binding and/or function of CXCR3 chemokines. Although it is suggested that these compounds bind in an allosteric fashion, thus far no evidence has been provided regarding the molecular details of their interaction with CXCR3.
View Article and Find Full Text PDFThis review will focus on the construction, refinement, and validation of G-protein-coupled receptor (GPCR) structural models for the purpose of structure-based virtual screening (SBVS) and ligand design. The review will present a comparative analysis of GPCR crystal structures and their implication on GPCR (homology) modeling. The challenges associated with steps along the modeling workflow will be discussed: the use of experimental anchors to steer the modeling procedure, amino acid sequence alignment and template selection, receptor structure refinement, loop modeling, ligand-binding mode prediction, and virtual screening for novel ligands.
View Article and Find Full Text PDFSAR beyond protein-ligand interactions: By combining structure-affinity relationships, protein-ligand modeling studies, and quantum mechanical calculations, we show that ligand conformational energies and basicity play critical roles in ligand binding to the histamine H4 receptor, a GPCR that plays a key role in inflammation.
View Article and Find Full Text PDFThe G protein-coupled chemokine receptor CXCR3 plays a role in numerous inflammatory events. The endogenous ligands for the chemokine receptors are peptides, but in this study we disclose small-molecule ligands that are able to activate CXCR3. A class of biaryl-type compounds that is assembled by convenient synthetic routes is described as a new class of CXCR3 agonists.
View Article and Find Full Text PDFHydroxy-aryl-5,6,7,8-tetrahydroisoquinoline-4-carbonitriles represent interesting chemical scaffolds, but synthetic access to these compounds is limited. The reaction of 2-aroyl-cyclohexanones with 2-cyanoacetamide and base in ethanol has been reported to lead to the formation of the tetrahydroisoquinoline isomer. We show that depending on the electronic nature of the para-substituent on the aryl ring, formation of the regioisomeric tetrahydroquinoline isomer can significantly compete.
View Article and Find Full Text PDFWe present the systematic prospective evaluation of a protein-based and a ligand-based virtual screening platform against a set of three G-protein-coupled receptors (GPCRs): the β-2 adrenoreceptor (ADRB2), the adenosine A(2A) receptor (AA2AR), and the sphingosine 1-phosphate receptor (S1PR1). Novel bioactive compounds were identified using a consensus scoring procedure combining ligand-based (frequent substructure ranking) and structure-based (Snooker) tools, and all 900 selected compounds were screened against all three receptors. A striking number of ligands showed affinity/activity for GPCRs other than the intended target, which could be partly attributed to the fuzziness and overlap of protein-based pharmacophore models.
View Article and Find Full Text PDFThe histamine H(4) receptor (H(4)R) is a G protein-coupled receptor (GPCR) that plays an important role in inflammation. Similar to the homologous histamine H(3) receptor (H(3)R), two acidic residues in the H(4)R binding pocket, D(3.32) and E(5.
View Article and Find Full Text PDFWe have shown previously that different chemical classes of small-molecule antagonists of the human chemokine CXCR2 receptor interact with distinct binding sites of the receptor. Although an intracellular binding site for diarylurea CXCR2 antagonists, such as N-(2-bromophenyl)-N'-(7-cyano-1H-benzotriazol-4-yl)urea (SB265610), and thiazolopyrimidine compounds was recently mapped by mutagenesis studies, we now report on an imidazolylpyrimidine antagonist binding pocket in the transmembrane domain of CXCR2. Using different CXCR2 orthologs, chimeric proteins, site-directed mutagenesis, and in silico modeling, we have elucidated the binding mode of this antagonist.
View Article and Find Full Text PDFG-protein coupled receptors (GPCRs) are important drug targets for various diseases and of major interest to pharmaceutical companies. The function of individual members of this protein family can be modulated by the binding of small molecules at the extracellular side of the structurally conserved transmembrane (TM) domain. Here, we present Snooker, a structure-based approach to generate pharmacophore hypotheses for compounds binding to this extracellular side of the TM domain.
View Article and Find Full Text PDFThe biosynthesis of the mineralocorticoid hormone aldosterone involves a multistep hydroxylation of 11-deoxycorticosterone at the 11- and 18-positions, resulting in the formation of corticosterone and 18-hydroxycorticosterone, the final precursor of aldosterone. Two members of the cytochrome P450 11B family, CYP11B1 and CYP11B2, are known to catalyze these 11- and 18-hydroxylations, however, only CYP11B2 can oxidize 18-hydroxycorticosterone to aldosterone. It is unknown what sequence of hydroxylations leads to the formation of 18-hydroxycorticosterone.
View Article and Find Full Text PDFReducing aldosterone action is beneficial in various major diseases such as heart failure. Currently, this is achieved with mineralocorticoid receptor antagonists, however, aldosterone synthase (CYP11B2) inhibitors may offer a promising alternative. In this study, we used three-dimensional modeling of CYP11B2 to model the binding modes of the natural substrate 18-hydroxycorticosterone and the recently published CYP11B2 inhibitor R-fadrozole as a rational guide to design 44 structurally simple and achiral 1-benzyl-1H-imidazoles.
View Article and Find Full Text PDFReversal of cardiac fibrosis is a major determinant of the salutary effects of mineralocorticoid receptor antagonists in heart failure. Recently, R-fadrozole was coined as an aldosterone biosynthesis inhibitor, offering an appealing alternative to mineralocorticoid receptor antagonists to block aldosterone action. The present study aimed to evaluate the effects of R- and S-fadrozole on plasma aldosterone and urinary aldosterone excretion rate and to compare their effectiveness vs.
View Article and Find Full Text PDFAldosterone is synthesised by aldosterone synthase (CYP11B2). CYP11B2 has a highly homologous isoform, steroid 11beta-hydroxylase (CYP11B1), which is responsible for the biosynthesis of aldosterone precursors and glucocorticoids. To investigate aldosterone biosynthesis and facilitate the search for selective CYP11B2 inhibitors, we constructed three-dimensional models for CYP11B1 and CYP11B2 for both human and rat.
View Article and Find Full Text PDFNovozym 435-catalyzed ring-opening of a range of omega-methylated lactones demonstrates fascinating differences in rate of reaction and enantioselectivity. A switch from S- to R-selectivity was observed upon going from small (ring sizes