In this report, non-isomerisable analogs of arginine tRNA (Arg-triazole-tRNA) have been synthesized as tools to study tRNA-dependent aminoacyl-transferases. The synthesis involves the incorporation of 1,4 substituted-1,2,3 triazole ring to mimic the ester bond that connects the amino acid to the terminal adenosine in the natural substrate. The synthetic procedure includes (i) a coupling between 2'- or 3'-azido-adenosine derivatives and a cytidine phosphoramidite to access dinucleotide molecules, (ii) Cu-catalyzed cycloaddition reactions between 2'- or 3'-azido dinucleotide in the presence of an alkyne molecule mimicking the arginine, providing the corresponding Arg-triazole-dinucleotides, (iii) enzymatic phosphorylation of the 5'-end extremity of the Arg-triazole-dinucleotides with a polynucleotide kinase, and (iv) enzymatic ligation of the 5'-phosphorylated dinucleotides with a 23-nt RNA micro helix that mimics the acceptor arm of arg-tRNA or with a full tRNA.
View Article and Find Full Text PDFFor structural, biochemical, or pharmacological studies, it is required to have pure RNA in large quantities. We previously devised a generic approach that allows for efficient in vivo expression of recombinant RNA in Escherichia coli. We have extended the "tRNA scaffold" method to RNA-protein coexpression in order to express and purify RNA by affinity in native condition.
View Article and Find Full Text PDFThe Nef protein of human and simian immunodeficiency viruses boosts viral pathogenicity through its interactions with host cell proteins. By combining the polyvalency of its large unstructured regions with the binding selectivity and strength of its folded core domain, Nef can associate with many different host cell proteins, thereby disrupting their functions. For example, the combination of a linear proline-rich motif and hydrophobic core domain surface allows Nef to bind tightly and specifically to SH3 domains of Src family kinases.
View Article and Find Full Text PDFCrystallographic studies of RNA/protein complexes are primordial for the understanding of recognition determinants and catalytic mechanisms in the case of enzymes. However, due to the flexibility and propensity to conformational heterogeneity of RNAs, as well as the mostly electrostatic interactions of RNA/protein complexes, they are difficult to crystallize. We present here a method to trap the two interacting partners in a covalent complex, based on a modified reactive RNA allowing the use of the full range of common crystallogenesis tools.
View Article and Find Full Text PDFDEAD-box helicases play central roles in the metabolism of many RNAs and ribonucleoproteins by assisting their synthesis, folding, function and even their degradation or disassembly. They have been implicated in various phenomena, and it is often difficult to rationalize their molecular roles from in vivo studies. Once purified in vitro, most of them only exhibit a marginal activity and poor specificity.
View Article and Find Full Text PDFRNA methyltransferases (MTases) catalyse the transfer of a methyl group to their RNA substrates using most-often S-adenosyl-L-methionine (SAM) as cofactor. Only few RNA-bound MTases structures are currently available due to the difficulties in crystallising RNA:protein complexes. The lack of complex structures results in poorly understood RNA recognition patterns and methylation reaction mechanisms.
View Article and Find Full Text PDFThe HIV-1 viral protein R (Vpr) is incorporated into virus particle during budding suggesting that its presence in the mature virion is required in the early steps of the virus life cycle in newly infected cells. Vpr is released into the host cell cytoplasm to participate to the translocation of the preintegration complex (PIC) into the nucleus for integration of the viral DNA into the host genome. Actually, Vpr plays a key role in the activation of the transcription of the HIV-1 long terminal repeat (LTR), mediates cell cycle arrest in G2 to M transition, facilitates apoptosis and controls the fidelity of reverse transcription.
View Article and Find Full Text PDFThe enzymes of the TrmI family catalyze the formation of the m(1)A58 modification in tRNA. We previously solved the crystal structure of the Thermus thermophilus enzyme and conducted a biophysical study to characterize the interaction between TrmI and tRNA. TrmI enzymes are active as a tetramer and up to two tRNAs can bind to TrmI simultaneously.
View Article and Find Full Text PDFFor structural, biochemical or pharmacological studies, it is required to have pure RNA in large quantities. We previously devised a generic approach that allows efficient in vivo expression of recombinant RNA in Escherichia coli. We have extended the "tRNA scaffold" method to RNA/protein co-expression in order to express and purify RNA by affinity in native condition.
View Article and Find Full Text PDFTmRNA is an abundant RNA in bacteria with tRNA and mRNA features. It is specialized in trans-translation, a translation rescuing system. We demonstrate that its partner protein SmpB binds the tRNA-like region (TLD) in vivo and chaperones the fold of the TLD-H2 region.
View Article and Find Full Text PDFBacteriophage T5 represents a large family of lytic Siphoviridae infecting Gram-negative bacteria. The low-resolution structure of T5 showed the T=13 geometry of the capsid and the unusual trimeric organization of the tail tube, and the assembly pathway of the capsid was established. Although major structural proteins of T5 have been identified in these studies, most of the genes encoding the morphogenesis proteins remained to be identified.
View Article and Find Full Text PDFRNA has emerged as a major player in many cellular processes. Understanding these processes at the molecular level requires homogeneous RNA samples for structural, biochemical and pharmacological studies. We previously devised a generic approach that allows efficient in vivo expression of recombinant RNA in Escherichia coli.
View Article and Find Full Text PDFIn vivo overproduction of tRNA chimeras yields an RNA insert within a tRNA scaffold. For some applications, it may be necessary to discard the scaffold. Here we present a protocol for selective cleavage of the RNA of interest from the tRNA scaffold, using RNase H and two DNA oligonucleotides.
View Article and Find Full Text PDFFor structural, biochemical, or pharmacological studies, it is required to have pure RNA in large quantities. In vitro transcription or chemical synthesis are the principal methods to produce RNA. Here, we describe an alternative method allowing RNA production in bacteria and its purification by liquid chromatography.
View Article and Find Full Text PDFStable, folded RNA are involved in many key cellular processes and can be used as tools for biological, pharmacological and/or molecular design studies. However, their widespread use has been somewhat limited by their fragile nature and by the difficulties associated with their production on a large scale, which were limited to in vitro methods. This work reviews the novel techniques recently developed that allow efficient expression of recombinant RNA in vivo in Escherichia coli.
View Article and Find Full Text PDFRNA production using in vivo transcription by Escherichia coli allows preparation of milligram quantities of RNA for biochemical, biophysical and structural investigations. We describe here a generic protocol for the overproduction and purification of recombinant RNA using liquid chromatography. The strategy utilizes a transfer RNA (tRNA) as a scaffold that can be removed from the RNA of interest by digestion of the fusion RNA at a designed site by RNase H.
View Article and Find Full Text PDFTight recognition of codon-anticodon pairings by the ribosome ensures the accuracy and fidelity of protein synthesis. In eubacteria, translational surveillance and ribosome rescue are performed by the 'tmRNA-SmpB' system (transfer messenger RNA-small protein B). Remarkably, entry and accommodation of aminoacylated-tmRNA into stalled ribosomes occur without a codon-anticodon interaction but in the presence of SmpB.
View Article and Find Full Text PDFRNA has emerged as a major player in most cellular processes. Understanding these processes at the molecular level requires homogeneous RNA samples for structural, biochemical and pharmacological studies. So far, this has been a bottleneck, as the only methods for producing such pure RNA have been in vitro syntheses.
View Article and Find Full Text PDFBacteriophage terminases are essential molecular motors involved in the encapsidation of viral DNA. They are hetero-multimers whose large subunit encodes both ATPase and endonuclease activities. Although the ATPase domain is well characterized from sequence and functional analysis, the C-terminal region remains poorly defined.
View Article and Find Full Text PDFA remarkable property of bacteriophages is their capacity to encapsidate large amounts of DNA during morphogenesis and to maintain their genome in the capsid in a very stable form even under extreme conditions. Even as remarkable is the efficiency with which their genome is ejected from the phage particle and transferred into the host bacteria. Biophysical techniques have led to significant progresses in characterizing these mechanisms.
View Article and Find Full Text PDFProteins of the Mob1/phocein family are found in all eukaryotic cells. In yeast, they are activating subunits of Dbf2-related protein kinases involved in cell cycle control. Despite the wide occurrence of these proteins, their biological functions remain poorly understood.
View Article and Find Full Text PDF