Measuring seminal root angle is an important aspect of root phenotyping, yet automated methods are lacking. We introduce SeminalRootAngle, a novel open-source automated method that measures seminal root angles from images. To ensure our method is flexible and user-friendly we build on an established corrective annotation training method for image segmentation.
View Article and Find Full Text PDFIn the field of microbiome studies, it is of interest to infer correlations between abundances of different microbes (here referred to as operational taxonomic units, OTUs). Several methods taking the compositional nature of the sequencing data into account exist. However, these methods cannot infer correlations between OTU abundances and other variables.
View Article and Find Full Text PDFSymbiosis with soil-dwelling bacteria that fix atmospheric nitrogen allows legume plants to grow in nitrogen-depleted soil. Symbiosis impacts the assembly of root microbiota, but it is unknown how the interaction between the legume host and rhizobia impacts the remaining microbiota and whether it depends on nitrogen nutrition. Here, we use plant and bacterial mutants to address the role of Nod factor signaling on Lotus japonicus root microbiota assembly.
View Article and Find Full Text PDFBackground: Understanding the mechanisms underlining forage production and its biomass nutritive quality at the omics level is crucial for boosting the output of high-quality dry matter per unit of land. Despite the advent of multiple omics integration for the study of biological systems in major crops, investigations on forage species are still scarce.
Results: Our results identified substantial changes in gene co-expression and metabolite-metabolite network topologies as a result of genetic perturbation by hybridizing L.
We identified marker-trait associations for key faba bean agronomic traits and genomic signatures of selection within a global germplasm collection. Faba bean (Vicia faba L.) is a high-protein grain legume crop with great potential for sustainable protein production.
View Article and Find Full Text PDFIncreasing the proportion of locally produced plant protein in currently meat-rich diets could substantially reduce greenhouse gas emissions and loss of biodiversity. However, plant protein production is hampered by the lack of a cool-season legume equivalent to soybean in agronomic value. Faba bean (Vicia faba L.
View Article and Find Full Text PDFJoint modeling of correlated multienvironment and multiharvest data of perennial crop species may offer advantages in prediction schemes and a better understanding of the underlying dynamics in space and time. The goal of the present study was to investigate the relevance of incorporating the longitudinal dimension of within-season multiple measurements of forage perennial ryegrass (Lolium perenne L.) traits in a reaction-norm model setup that additionally accounts for genotype × environment (G × E) interactions.
View Article and Find Full Text PDFAccurate genomic prediction of yield within and across generations was achieved by estimating the genetic merit of individual white clover genotypes based on extensive genetic replication using cloned material. White clover is an agriculturally important forage legume grown throughout temperate regions as a mixed clover-grass crop. It is typically cultivated with low nitrogen input, making yield dependent on nitrogen fixation by rhizobia in root nodules.
View Article and Find Full Text PDFThis work represents a novel mechanistic approach to simulate and study genomic networks with accompanying regulatory interactions and complex mechanisms of quantitative trait formation. The approach implemented in MeSCoT software is conceptually based on the omnigenic genetic model of quantitative (complex) trait, and closely imitates the basic in vivo mechanisms of quantitative trait realization. The software provides a framework to study molecular mechanisms of gene-by-gene and gene-by-environment interactions underlying quantitative trait's realization and allows detailed mechanistic studies of impact of genetic and phenotypic variance on gene regulation.
View Article and Find Full Text PDFImage-based phenotype data with high temporal resolution offers advantages over end-point measurements in plant quantitative genetics experiments, because growth dynamics can be assessed and analysed for genotype-phenotype association. Recently, network-based camera systems have been deployed as customizable, low-cost phenotyping solutions. Here, we implemented a large, automated image-capture system based on distributed computing using 180 networked Raspberry Pi units that could simultaneously monitor 1,800 white clover () plants.
View Article and Find Full Text PDFBackground: The traditional way to estimate variance components (VC) is based on the animal model using a pedigree-based relationship matrix (A) (A-AM). After genomic selection was introduced into breeding programs, it was anticipated that VC estimates from A-AM would be biased because the effect of selection based on genomic information is not captured. The single-step method (H-AM), which uses an H matrix as (co)variance matrix, can be used as an alternative to estimate VC.
View Article and Find Full Text PDFGenomic selection has been extensively implemented in plant breeding schemes. Genomic selection incorporates dense genome-wide markers to predict the breeding values for important traits based on information from genotype and phenotype records on traits of interest in a reference population. To date, most relevant investigations have been performed using single trait genomic prediction models (STGP).
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFReducing methane emissions from livestock production is of great importance for the sustainable management of the Earth's environment. Rumen microbiota play an important role in producing biogenic methane. However, knowledge of how host genetics influences variation in ruminal microbiota and their joint effects on methane emission is limited.
View Article and Find Full Text PDFGenome-wide association study (GWAS) and genomic prediction (GP) are extensively employed to accelerate genetic gain and identify QTL in plant breeding. In this study, 1,317 spring barley and 1,325 winter wheat breeding lines from a commercial breeding program were genotyped with the Illumina 9 K barley or 15 K wheat SNP-chip, and phenotyped in multiple years and locations. For GWAS, in spring barley, a QTL on chr.
View Article and Find Full Text PDFThis study demonstrates that an active breeding nursery with rotation can be used to identify marker-trait associations for biomass yield and quality parameters that are important for biorefinery purposes. Wheat straw is a valuable feedstock for bioethanol production, but due to the recalcitrant nature of lignocellulose, its efficient use in biorefineries is limited by its low digestibility and difficult conversion of structural carbohydrates into free sugars. A genome-wide association study (GWAS) was conducted to search for significant SNP markers that could be used in a breeding programme to improve the value of wheat straw in a biorefinery setting.
View Article and Find Full Text PDFBackground: In settings with social interactions, the phenotype of an individual is affected by the direct genetic effect (DGE) of the individual itself and by indirect genetic effects (IGE) of its group mates. In the presence of IGE, heritable variance and response to selection depend on size of the interaction group (group size), which can be modelled via a 'dilution' parameter (d) that measures the magnitude of IGE as a function of group size. However, little is known about the estimability of d and the precision of its estimate.
View Article and Find Full Text PDFBackground: Genotyping by sequencing (GBS) is a robust method to genotype markers. Many factors can influence the genotyping quality. One is that heterozygous genotypes could be wrongly genotyped as homozygotes, dependent on the genotyping depths.
View Article and Find Full Text PDFImplicit assumption of common (co)variance for all loci in multi-trait Genomic Best Linear Unbiased Prediction (GBLUP) results in a genomic relationship matrix () that is common to all traits. When this assumption is violated, Bayesian whole genome regression methods may be superior to GBLUP by accounting for unequal (co)variance for all loci or genome regions. This study aimed to develop a strategy to improve the accuracy of GBLUP for multi-trait genomic prediction, using (co)variance estimates of SNP effects from Bayesian whole genome regression methods.
View Article and Find Full Text PDFGenomic selection (GS) is becoming increasingly applicable to crops as the genotyping costs continue to decrease, which makes it an attractive alternative to traditional selective breeding based on observed phenotypes. With genome-wide molecular markers, selection based on predictions from genotypes can be made in the absence of direct phenotyping. The reliability of predictions depends strongly on the number of individuals used for training the predictive algorithms, particularly in a highly genetically diverse organism such as potatoes; however, the relationship between the individuals also has an enormous impact on prediction accuracy.
View Article and Find Full Text PDFRyegrass single plants, bi-parental family pools, and multi-parental family pools are often genotyped, based on allele-frequencies using genotyping-by-sequencing (GBS) assays. GBS assays can be performed at low-coverage depth to reduce costs. However, reducing the coverage depth leads to a higher proportion of missing data, and leads to a reduction in accuracy when identifying the allele-frequency at each locus.
View Article and Find Full Text PDFThe aim of the this study was to identify SNP markers associated with five important wheat quality traits (grain protein content, Zeleny sedimentation, test weight, thousand-kernel weight, and falling number), and to investigate the predictive abilities of GBLUP and Bayesian Power Lasso models for genomic prediction of these traits. In total, 635 winter wheat lines from two breeding cycles in the Danish plant breeding company Nordic Seed A/S were phenotyped for the quality traits and genotyped for 10,802 SNPs. GWAS were performed using single marker regression and Bayesian Power Lasso models.
View Article and Find Full Text PDFBackground: Accurate genomic prediction requires a large reference population, which is problematic for traits that are expensive to measure. Traits related to milk protein composition are not routinely recorded due to costly procedures and are considered to be controlled by a few quantitative trait loci of large effect. The amount of variation explained may vary between regions leading to heterogeneous (co)variance patterns across the genome.
View Article and Find Full Text PDFAs for most phenotypes, the amount of variance in educational achievement explained by SNPs is lower than the amount of additive genetic variance estimated in twin studies. Twin-based estimates may however be biased because of self-selection and differences in cognitive ability between twins and the rest of the population. Here we compare twin registry based estimates with a census-based heritability estimate, sampling from the same Dutch birth cohort population and using the same standardized measure for educational achievement.
View Article and Find Full Text PDFGenomic prediction models for starch content and chipping quality show promising results, suggesting that genomic selection is a feasible breeding strategy in tetraploid potato. Genomic selection uses genome-wide molecular markers to predict performance of individuals and allows selections in the absence of direct phenotyping. It is regarded as a useful tool to accelerate genetic gain in breeding programs, and is becoming increasingly viable for crops as genotyping costs continue to fall.
View Article and Find Full Text PDF