Publications by authors named "Luc Ferrari"

Titanium dental implants have common clinical applications due to their biocompatibility, biophysical and biochemical characteristics. Although current titanium is thought to be safe and beneficial for patients, there are several indications that it may release toxic metal ions or metal nanoparticles from its alloys into the surrounding environment, which could lead to clinically relevant complications including toxic reactions as well as immune dysfunctions. Hence, an adequate selection and testing of medical biomaterial with outstanding properties are warranted.

View Article and Find Full Text PDF

Medical imaging has relied on ultrasound (US) as an exploratory method for decades. Nonetheless, in cell biology, the numerous US applications are mainly in the research and development phase. In this review, we report the main effects on human or mammal cells of US induced by bulk or surface acoustic waves (SAW).

View Article and Find Full Text PDF

Unlabelled: Nanoparticle toxicity assessments have moved closer to physiological conditions while trying to avoid the use of animal models. An example of new in vitro exposure techniques developed is the exposure of cultured cells at the air-liquid interface (ALI), particularly in the case of respiratory airways. While the commercially available VITROCELL Cloud System has been applied for the delivery of aerosolized substances to adherent cells under ALI conditions, it has not yet been tested on lung surfactant and semi-adherent cells such as alveolar macrophages, which are playing a pivotal role in the nanoparticle-induced immune response.

View Article and Find Full Text PDF

: Community pharmacists are among the frontline health professionals who manage patients with an opioid-related disorder (ORD). Pharmacists frequently have a negative attitude toward these patients, which could have a negative impact on their management. However, education on ORD may improve the attitude of future healthcare professionals.

View Article and Find Full Text PDF
Article Synopsis
  • Investigations of the biological effects of nanoparticles (NP) usually happen in lab settings or on rodents, but measuring the real cellular dose is challenging due to NP sedimentation.
  • Researchers exposed rat macrophages to TiO2 nanoparticles in a more realistic air-liquid interface (ALI) setup and analyzed gene expression changes after exposure.
  • They identified 126 differentially expressed genes, with some previously linked to NP exposure, and validated that Ccl4 gene expression serves as a positive exposure marker.
View Article and Find Full Text PDF

There are many studies concerning titanium dioxide (TiO) nanoparticles (NP) toxicity. Nevertheless, there are few publications comparing and exposure, and even less comparing air-liquid interface exposure (ALI) with other and exposures. The identification and validation of common markers under different exposure conditions are relevant for the development of smart and quick nanotoxicity tests.

View Article and Find Full Text PDF

Designing and manufacturing multifunctional nanoparticles (NPs) are of considerable interest for both academic and industrial research. Among NPs used in this field, iron oxide NPs show low toxicity compared to metallic ones and are thus of high interest for biomedical applications. In this work, superparamagnetic FeO-based core/shell NPs were successfully prepared and characterized by the combination of different techniques, and their physical properties were investigated.

View Article and Find Full Text PDF

Functionalized multi-walled carbon nanotubes (MWCNT) have become the focus of increased research interest, particularly in their application as tools in different areas, such as the biomedical field. Despite the benefits associated with functionalization of MWCNT, particularly in overcoming issues relating to solubility, several studies have demonstrated that these functionalized nanoparticles display different toxicity profiles. For this study, we aim to compare NR8383 cells responses to three well-characterized MWCNT with varying functional groups.

View Article and Find Full Text PDF

Metal oxide nanoparticles (NPs), such as ZnO, ZnFeO, and FeO, are widely used in industry. However, little is known about the cellular pathways involved in their potential toxicity. Here, we particularly investigated the key molecular pathways that are switched on after exposure to sub-toxic doses of ZnO, ZnFeO, and FeO in the in vitro rat alveolar macrophages (NR8383).

View Article and Find Full Text PDF

Human exposure to airborne carbon nanotubes (CNT) is increasing because of their applications in different sectors; therefore, they constitute a biological hazard. Consequently, developing studies on CNT toxicity become a necessity. CNTs can have different properties in term of length, size and charge.

View Article and Find Full Text PDF

Objective: S-nitrosogluthatione (GSNO), a S-nitrosothiol, is a commonly used as nitric oxide (NO) donor. However, its half-life is too short for a direct therapeutic use. To protect and ensure a sustained release of NO, the encapsulation of GSNO into nanoparticles may be an interesting option.

View Article and Find Full Text PDF

Despite a wide production and use of zinc oxide nanoparticles (ZnONP), their toxicological study is only of limited number and their impact at a molecular level is seldom addressed. Thus, we have used, as a model, zinc oxide nanoparticle NM110 (ZnO110NP) exposure to PMA-differentiated THP-1 macrophages. The cell viability was studied at the cellular level using WST-1, LDH and Alamar Blue assays, as well as at the molecular level by transcriptomic analysis.

View Article and Find Full Text PDF

The aim of this study was to prepare Eudragit Retard L (Eudragit RL) nanoparticles (ENPs) and to determine their properties, their uptake by the human THP-1 cell line and their effect on the hematological parameters and erythrocyte damage in rats. ENPs showed an average size of 329.0 ± 18.

View Article and Find Full Text PDF

Due to their unique properties, engineered nanoparticles (NPs) have found broad use in industry, technology, and medicine, including as a vehicle for drug delivery. However, the understanding of NPs' interaction with different types of mammalian cells lags significantly behind their increasing adoption in drug delivery. In this study, we show unique responses of human epithelial breast cells when exposed to polymeric Eudragit® RS NPs (ENPs) for 1-3 days.

View Article and Find Full Text PDF

Background: Sewage workers are exposed to multiple chemicals among which many are suspected genotoxicants. Therefore, they might incur DNA damage and oxidative stress. We aimed to explore integrated urinary biomarkers, assessing the overall urine genotoxicity by in vitro comet and micronucleus assays and measuring urinary 8-oxo-2'-deoxyguanosine.

View Article and Find Full Text PDF

Toluene is a high-production industrial solvent, which can disrupt the auditory system in rats. However, toluene-induced hearing loss is species dependent. For instance, despite long-lasting exposures to high concentrations of aromatic solvent, no study has yet succeeded in causing convincing hearing loss in the guinea pig.

View Article and Find Full Text PDF

Toluene can be considered an ototoxic chemical compound in the rat. Outer hair cells are particularly sensitive to this aromatic organic solvent or to one of its metabolites. The objective of the present study was to evaluate the possible role played by cysteine S-conjugates in the ototoxic process in Long-Evans rats.

View Article and Find Full Text PDF

Background: Sewage workers provide an essential service in the protection of public and environmental health. However, they are exposed to varied mixtures of chemicals; some are known or suspected to be genotoxics or carcinogens. Thus, trying to relate adverse outcomes to single toxicant is inappropriate.

View Article and Find Full Text PDF

Hyperlipidaemia, i.e. increase in total cholesterol and triglycerides, is a common side-effect of the immunosuppressive drugs rapamycin (RAPA) and cyclosporine A (CsA), and is probably related to inhibition of the 27-hydroxylation of cholesterol (acid pathway of bile acid biosynthesis).

View Article and Find Full Text PDF

In order to approach the astroglial implication of addictive and neurotoxic processes associated with psychostimulant drug abuse, the effects of amphetamine or cocaine (1-100 microM) on redox status, AP-1 transcription factor and pro-enkephalin, an AP-1 target gene, were investigated in the human astrocyte-like U373 MG cells. We demonstrated an early increase in the generation of radical oxygen species and in the formation of 4-hydroxynonenal-adducts reflecting the pro-oxidant action of both substances. After 1 h or 96 h of treatment, Fos and Jun protein levels were altered and the DNA-binding activity of AP-1 was increased in response to both substances.

View Article and Find Full Text PDF

This article summarises the mechanisms responsible for the hyperlipidaemia observed after immunosuppressive treatment. Much progress has been achieved in the treatment of organ transplantation over the last 10 years, in particular because of the use of new immunosuppressive drugs with less nephrotoxicity. However, hypercholesterolaemia and hypertriglyceridaemia persist among many patients, who are thus more likely to develop cardiovascular diseases.

View Article and Find Full Text PDF

The expression of cytochrome P450 (CYP) enzymes and cyclo-oxygenases (COX) was investigated in human saphenous veins by reverse transcription-polymerase chain reaction analysis. Non-varicose veins were obtained from patients undergoing aortocoronary bypass grafting, whereas varicose veins were obtained from patients undergoing stripping removal of varicose saphenous veins. In non-varicose veins, CYP1B1, CYP2C, CYP2E1 and CYP4A11 were detected, whereas CYP2J2, CYP3A5, COX-1 and COX-2 were detected almost exclusively in varicose veins.

View Article and Find Full Text PDF

The variability in drug response originates partly from genetics, with possible consequences for drug efficacy, adverse effects, and toxicity. Until now, pharmacogenetics mainly indicated the best known source of variability, that is, the variability caused by drug metabolism. However, simultaneous progress in the knowledge of biochemical targets of drugs and of the human genome, together with the development of new technologies, revealed many new sources of human genetic variation, e.

View Article and Find Full Text PDF