Publications by authors named "Luc E Gosselin"

Supplementation of health promoting nutraceuticals may be an effective adjunct strategy with other lifestyle and drug approaches to impede disease progression in prediabetic subjects. α-Lipoic acid, a naturally occurring short-chain fatty acid, has been extensively evaluated for its antioxidant and glycemic control properties but has rarely been investigated as a lipid-lowering strategy. We conducted a pilot study to examine the effects of α-lipoic acid supplementation on glycemic control and lipid profile in pre-diabetic, overweight/obese adults.

View Article and Find Full Text PDF

Impaired glucose tolerance can have significant health consequences. The purposes of this preliminary study were to examine whether a single session of kettlebell exercise improves acute post-exercise glucose tolerance in sedentary individuals, and whether it was as effective as high-intensity interval running. Six sedentary male subjects underwent a two-hour oral glucose tolerance test following three different conditions: 1) control (no exercise); 2) kettlebell exercise (2 sets of 7 exercises, 15 repetitions per exercise with 30 seconds rest between each exercise); or 3) high-intensity interval running (10 one-minute intervals at a workload corresponding to 90% VOmax interspersed with one-minute active recovery periods).

View Article and Find Full Text PDF

Background: Some of the most serious consequences of normal ageing relate to its effects on skeletal muscle, particularly significant wasting and associated weakness, termed "sarcopenia". The underlying mechanisms of sarcopenia have yet to be elucidated completely but an altered muscle inflammatory response after injury is a likely contributing factor. In this study we investigated age-related changes in the expression of numerous inflammatory markers linked to successful muscle regeneration.

View Article and Find Full Text PDF

Although high-intensity sprint interval training (SIT) employing the Wingate protocol results in significant physiological adaptations, it is conducted at supramaximal intensity and is potentially unsafe for sedentary middle-aged adults. We therefore evaluated the metabolic and cardiovascular response in healthy young individuals performing 4 high-intensity (~90% VO2max) aerobic interval training (HIT) protocols with similar total work output but different work-to-rest ratio. Eight young physically active subjects participated in 5 different bouts of exercise over a 3-week period.

View Article and Find Full Text PDF

Many patients with Duchenne muscular dystrophy (DMD) are eventually diagnosed with sleep-disordered breathing (SDB). SDB is associated with reduced ventilation, decreased arterial oxygen tension, and increased respiratory muscle recruitment during sleep, factors that could be especially detrimental to respiratory muscles in DMD. To assess whether SDB impacts dystrophin-deficient respiratory muscle function and fibrosis, diaphragm strength, and collagen content were evaluated in dystrophic mice (Dmd(mdx)) exposed to experimental SDB.

View Article and Find Full Text PDF

Obstructive sleep apnea involves intermittent periods of airway occlusions that lead to repetitive oxygen desaturations. Exposure to chronic intermittent hypoxia (IH) in rats increases diurnal blood pressure and alters skeletal muscle physiology. The impact of IH on upper airway muscle function is unknown.

View Article and Find Full Text PDF

Respiratory muscles can fatigue during prolonged and maximal exercise, thus reducing performance. The respiratory system is challenged during underwater exercise due to increased hydrostatic pressure and breathing resistance. The purpose of this study was to determine if two different respiratory muscle training protocols enhance respiratory function and swimming performance in divers.

View Article and Find Full Text PDF

Skeletal muscles in mdx mice exhibit differential degrees of pathological changes and fibrosis. The purpose of this study was to examine differences in various indices of collagen metabolism in skeletal muscles with widely different functions and activity profiles in mdx mice, and to determine whether pirfenidone would attenuate the development of fibrosis. Mice in the pirfenidone group were orally fed pirfenidone (500 mg/kg) daily for 4 weeks.

View Article and Find Full Text PDF

Fibrosis is a common pathological feature observed in muscle from patients with Duchenne muscular dystrophy and in mdx diaphragm. The purpose of this study was to determine whether pentoxifylline (PTX) treatment for 4 weeks (16 mg/kg/day) could significantly attenuate the process of fibrosis in diaphragm muscle from mdx mice. PTX treatment had no impact on in vitro diaphragm muscle contractile function.

View Article and Find Full Text PDF

Fibrosis is a common pathological feature observed in muscle from patients with Duchenne muscular dystrophy (DMD). In the dystrophic (mdx) mouse model of DMD, the diaphragm is more severely affected than other skeletal muscles. The level of transforming growth factor-beta1 (TGF-beta1), an inflammatory cytokine, is significantly elevated in mdx diaphragm.

View Article and Find Full Text PDF

This study examined the effect of estrogen replacement on soleus muscle size and contractile function in ovariectomized rats during physiological growth. Seven week old female Sprague-Dawley rats were assigned to one of three treatment groups: (1) control animals (SHAM), (2) ovariectomized animals without estrogen replacement (OVX/CO), and (3) ovariectomized animals with 17 beta-estradiol replacement (OVX/E2). OVX/CO and OVX/E2 animals were pair-fed to SHAM animals to rule out the potentially confounding effect of differences in food intake.

View Article and Find Full Text PDF

Skeletal muscle is a unique tissue whose function is dependent in great part on its ultrastructure. Repeated intense muscular contractions, especially those resulting in muscle lengthening, can lead to alterations in muscle structure (i.e.

View Article and Find Full Text PDF

Muscular dystrophy is associated with inflammation and fiber necrosis in the diaphragm that may alter ventilatory function. The purpose of this study was to determine to what extent in vivo ventilatory function in dystrophic (mdx) mice was compromised and to assess the impact of deletion of tumor necrosis factor-alpha (TNF-alpha), a known proinflammatory cytokine, on ventilatory function, diaphragm contractility, and myosin heavy chain (MHC) distribution in 10-12-month-old mdx mice. Although the resting ventilatory pattern did not significantly differ between control and mdx mice, the ventilatory response to hypercapnia in mdx mice was significantly attenuated.

View Article and Find Full Text PDF

The purpose of this study was to determine whether initial muscle length influenced the extent of isometric force deficit following 20 in vitro lengthening contractions of the soleus muscle from Fischer 344 rats. Force deficit was evaluated following one of five protocols: (1) lengthening contractions from optimal muscle length (Lo) to 120% Lo; (2) lengthening contractions from 80% Lo to Lo; (3) lengthening contractions from Lo to 120% Lo but with a stimulation frequency that elicited the same force as protocol 2; (4) 20 isometric contractions at Lo; (5) 20 stretches +/- 20% Lo in inactive muscle. Following lengthening contractions, extent of force deficit significantly differed between protocols 1, 2, and 3 (P < 0.

View Article and Find Full Text PDF

The purposes of this study were to (1) determine whether endurance training employing solely concentric contractions would reduce force deficit following lengthening contractions, and (2) to determine if aged skeletal muscle would respond similarly from training, compared with young animals. Young (3-month) and old (23-month) male Fischer 344 rats were randomly assigned to either a control or an exercise training group. Exercise training consisted of 10 weeks of treadmill running (15% grade, 45 min/day, and 5 days/week) such that by the end of training the young and old rats were exercising at 27 and 15 m/min, respectively (approximately 70% ).

View Article and Find Full Text PDF

Purpose: During inspiration, recruitment of the intrinsic laryngeal muscles (ILM) reduces the inspiratory load on the ventilatory pump muscles. The purpose of our study was to determine 1) whether the diaphragm adapts to denervation of the ILM, and 2) whether the additional stimulus of exercise training affects the degree to which the diaphragm adapts to ILM denervation.

Methods: Thirty-six male Sprague-Dawley rats (2 months) were randomly divided into sedentary control (SC), sedentary-denervated (SD), and exercise-denervated (ED) groups.

View Article and Find Full Text PDF