Shrimp rearing generate organic waste that is trapped in the pond sediment. In excess, these wastes may impair aquaculture ecosystem and shrimps' health. To promote the biological oxidation of accumulated organic waste, the pond is drained and dried at the end of each production cycle.
View Article and Find Full Text PDFBackground: In New-Caledonia, at the end of each shrimp production cycle, earthen ponds are drained and dried to enhance microbial decomposition of nutrient-rich waste trapped in the sediment during the rearing. However, excessive ponds drying may not be suitable for the decomposition activities of microorganisms. Halophytes, salt tolerant plants, naturally grow at vicinity of shrimp ponds; due to their specificity, we explored whether halophytes cultivation during the pond drying period may be suitable for pond bioremediation.
View Article and Find Full Text PDFPlant culture integration within aquaculture activities is a topic of recent interest with economic and environmental benefits. Shrimp farming activities generate nutrient-rich waste trapped in the sediments of farming ponds or release in the mangrove area. Thus, we investigate if the halophytes species naturally growing around the pond can use nitrogen and carbon from shrimp farming for remediation purposes.
View Article and Find Full Text PDFWe have investigated temporal variability in the quantity and biochemical composition of sediment organic matter along with variables proxies of water eutrophication (e.g., inorganic nutrient and chlorophyll-a) at two shrimp farms located in the Southern coast of New Caledonia and characterised by clear differences in shrimp feeding practices and levels of initial trophic conditions.
View Article and Find Full Text PDF