Publications by authors named "Luc Brans"

Background: Radiolabelled bombesin (BN) conjugates are promising radiotracers for imaging and therapy of breast and prostate tumours, in which BN2/gastrin-releasing peptide receptors are overexpressed. We describe the influence of the specific activity of a 177Lu-DOTA-PEG5k-Lys-B analogue on its therapeutic efficacy and compare it with its non-PEGylated counterpart.

Methods: Derivatisation of a stabilised DOTA-BN(7-14)[Cha13,Nle14] analogue with a linear PEG molecule of 5 kDa (PEG5k) was performed by PEGylation of the ϵ-amino group of a β3hLys-βAla-βAla spacer between the BN sequence and the DOTA chelator.

View Article and Find Full Text PDF

Introduction: Radiolabeled bombesin (BN) conjugates are promising radiotracers for imaging and therapy of breast and prostate tumors in which BN(2)/gastrin-releasing peptide (GRP) receptors are overexpressed. However, the low in vivo stability of BN conjugates may limit their clinical application. In an attempt to improve their pharmacokinetics and counteract their rapid enzymatic degradation, we prepared a series of polyethylene glycol (PEG)-ylated BN(7-14) analogues for radiolabeling with (99m)Tc(CO)(3) and evaluated them in vitro and in vivo.

View Article and Find Full Text PDF

Overexpression of the high affinity neurotensin receptor 1 (NTSR1), demonstrated in several human cancers, has been proposed as a new marker for human ductal pancreatic carcinoma and as an independent factor for poor prognosis for ductal breast cancer, head and neck squamous cell carcinoma, and non-small cell lung cancer. The aim of the present study was to develop new DOTA-neurotensin analogues for positron emission tomography (PET) imaging with (68)Ga and for targeted radiotherapy with (90)Y or (177)Lu. We synthesized a DOTA-neurotensin analogue series.

View Article and Find Full Text PDF

Synthetic strategies that enable the efficient and selective combination of different biologically active entities hold great promise for the development of multifunctional hybrid conjugates useful for biochemical and medical applications. Starting from side-chain-functionalized N(α)-propargyl lysine derivatives, conjugates containing a ⁹⁹(m)Tc-based imaging probe for SPECT and two different moieties (e.g.

View Article and Find Full Text PDF

Overexpression of the gastrin-releasing peptide receptor (GRPR) in a variety of human carcinomas has provided a means of diagnosis and treatment. Previously we reported a metabolically stable (N(α)His)Ac-βAla-βAla-[Cha(13),Nle(14)]BBS(7-14) analogue with high affinity for the GRPR. We have also shown that the biodistribution pattern of this fairly lipophilic, radiolabeled peptide can be enhanced by glycation, which is easily carried out by Cu(I)-catalyzed cycloaddition.

View Article and Find Full Text PDF

The selective and efficient synthesis of novel tridentate metal chelating systems containing two 1,4-disubstituted 1,2,3-triazole heterocycles obtained via the copper(I)-catalyzed cycloaddition of alkynes and azides (click reaction) is described. The constructs are shown to be efficient ligand systems for the chelation of fac-[M(CO)(3)(H(2)O)(3)](+) (M=(99m)Tc, Re) yielding well- defined and stable complexes. The organometallic (99m)Tc conjugates are suitable for application as diagnostic radiotracers for single photon emission computed tomography (SPECT) as demonstrated in vivo with a fragment of the tumor-targeting bombesin peptide functionalized with a di-1,2,3-triazole chelator and radiolabeled with [(99m)Tc(CO)(3)](+).

View Article and Find Full Text PDF

Radiolabeled bombesin (BBS) analogues are promising pharmaceuticals for imaging of cancer cells expressing gastrin-releasing peptide receptors (GRPR). However, most of the radiolabeled BBS derivatives show a high accumulation of activity in the liver and a strong hepatobiliary excretion, both unfavorable for imaging and therapy of abdominal lesions. For this reason, we introduced hydrophilic carbohydrated linker moieties into our BBS analogues to reduce the abdominal accumulation and to improve the tumor-to-background ratios.

View Article and Find Full Text PDF

The overexpression of peptide receptors in a variety of human carcinomas has generated considerable interest in peptide-based radiopharmaceuticals for peptide receptor imaging and peptide receptor radiotherapy. The gastrin-releasing peptide receptor is overexpressed in human prostate-, breast-, colon- and small cell lung carcinoma cells. We have developed metabolically stable (99m)Tc-radiolabeled bombesin ([Cha(13), Nle(14)]BBS(7-14)) analogs, which bind with high affinity to the gastrin-releasing peptide receptors.

View Article and Find Full Text PDF

The overexpression of Bombesin (BBS) receptors on a variety of human cancers make them interesting targets for tumor imaging and therapy. Analogues of the neuropeptide BBS have been functionalized with the (NalphaHis)- chelator for labeling with the 99mTc-tricarbonyl core. The introduction of a betaAla-betaAla linker between the stabilized BBS binding sequence and the chelator led to increased tumor uptake but still rather unfavorable in ViVo properties.

View Article and Find Full Text PDF

Click chemistry has been employed for the assembly of novel and efficient triazole-based multidentate chelating systems while simultaneously attaching them to molecules of biological interest. The "click-to-chelate" approach offers a powerful new tool for the modification of (bio)molecules with metal chelators for potential diagnostic and therapeutic applications.

View Article and Find Full Text PDF