(69/71)Ga atoms were reacted with 1,2-epoxybutane and its isotopomers, 1,2-epoxybutane-1,1-d(2) (CH(3)CH(2)CHOCD(2)) and 1,2-epoxybutane-2-d(1) (CH(3)CH(2)CDOCH(2)), under matrix-isolation conditions. The novel gallaoxetanes CH(3)CH(2)CHCH(2)GaO and CH(3)CH(2)CHCH(2)OGa, resulting from the insertion of the metal atom in the C(1)-O and C(2)-O bonds, respectively, of the 1,2-epoxybutane, were detected by EPR spectroscopy. The Ga and H hyperfine interaction (hfi) values of the gallaoxetanes, calculated using a DFT method, were used to help assign the EPR spectra.
View Article and Find Full Text PDFBackground: Placental pathology predicts persistent neurological impairment, even in normally grown infants. However, few studies have linked placental pathology with neonatal outcomes in a large population.
Methods: We matched the clinical outcomes of a cohort of neonates admitted to a neonatal intensive care unit (NICU) with placental pathology, where available, and examined (by multivariable logistic regression) the relationship between placental pathologies and these outcomes.
Group 13 metal atoms react with ethers under matrix isolation conditions to give a number of interesting products. This work has been extended to include the reaction of Al atoms with 1,2-epoxybutane (CH(3)CH(2)H(2)) and its isotopomers, 1,2-epoxybutane-1,1-d(2) (CH(3)CH(2)D(2)) and 1,2-epoxybutane-2-d(1) (CH(3)CH(2)H(2)). The paramagnetic species generated in the reaction have been studied by electron paramagnetic resonance (EPR) spectroscopy.
View Article and Find Full Text PDF