Angiogenesis is essential for remodeling and repairing existing vessels, and this process requires signaling pathways including those controlled by transforming growth factor beta (TGF-β). We have previously reported crosstalk between TGF-β and the protein kinase With No lysine (K) 1 (WNK1). Homozygous disruption of the gene encoding WNK1 results in lethality in mice near embryonic day E12 due to impaired angiogenesis and this defect can be rescued by endothelial-specific expression of an activated form of the WNK1 substrate kinase Oxidative Stress-Responsive 1 (OSR1).
View Article and Find Full Text PDFThe estrogen receptor (ER) designated ERα has actions in many cell and tissue types that impact glucose homeostasis. It is unknown if these include mechanisms in endothelial cells, which have the potential to influence relative obesity, and processes in adipose tissue and skeletal muscle that impact glucose control. Here we show that independent of impact on events in adipose tissue, endothelial ERα promotes glucose tolerance by enhancing endothelial insulin transport to skeletal muscle.
View Article and Find Full Text PDFMICOS is a conserved multisubunit complex that localizes to mitochondrial cristae junctions and organizes cristae positioning within the organelle. MICOS is organized into two independent subcomplexes; however, the mechanisms that dictate the assembly and spatial positioning of each MICOS subcomplex are poorly understood. Here, we determine that MICOS subcomplexes target independently of one another to sites on the inner mitochondrial membrane that are in proximity to contact sites between mitochondria and the ER.
View Article and Find Full Text PDFActivation of the Hedgehog (Hh) signaling pathway by mutations within its components drives the growth of several cancers. However, the role of Hh pathway activation in lung cancers has been controversial. Here, we demonstrate that the canonical Hh signaling pathway is activated in lung stroma by Hh ligands secreted from transformed lung epithelia.
View Article and Find Full Text PDFAtherosclerosis, which underlies life-threatening cardiovascular disorders such as myocardial infarction and stroke, is initiated by passage of low-density lipoprotein (LDL) cholesterol into the artery wall and its engulfment by macrophages, which leads to foam cell formation and lesion development. It is unclear how circulating LDL enters the artery wall to instigate atherosclerosis. Here we show in mice that scavenger receptor class B type 1 (SR-B1) in endothelial cells mediates the delivery of LDL into arteries and its accumulation by artery wall macrophages, thereby promoting atherosclerosis.
View Article and Find Full Text PDFPrevious work has identified divergent mechanisms by which cervical remodeling is achieved in preterm birth (PTB) induced by hormone withdrawal (mifepristone) or lipopolysaccharide (LPS). Our current study aims to document how collagen architecture is modified to achieve premature cervical remodeling in mice treated with LPS as a model of infection-induced inflammation. Cervices were collected on gestation day (d) 15 from mice with premature cervical ripening induced by LPS and compared to d15 and d18 controls as well as a hormone withdrawal PTB model.
View Article and Find Full Text PDFIn many types of tubules, continuity of the lumen is paramount to tubular function, yet how tubules generate lumen continuity is not known. We recently found that the F-actin-binding protein afadin is required for lumen continuity in developing renal tubules, though its mechanism of action remains unknown. Here, we demonstrate that afadin is required for lumen continuity by orienting the mitotic spindle during cell division.
View Article and Find Full Text PDFSoluble klotho, the shed ectodomain of the antiaging membrane protein α-klotho, is a pleiotropic endocrine/paracrine factor with no known receptors and poorly understood mechanism of action. Soluble klotho down-regulates growth factor-driven PI3K signaling, contributing to extension of lifespan, cardioprotection, and tumor inhibition. Here we show that soluble klotho binds membrane lipid rafts.
View Article and Find Full Text PDFHaematopoietic stem cells (HSCs) reside in a perivascular niche but the specific location of this niche remains controversial. HSCs are rare and few can be found in thin tissue sections or upon live imaging, making it difficult to comprehensively localize dividing and non-dividing HSCs. Here, using a green fluorescent protein (GFP) knock-in for the gene Ctnnal1 in mice (hereafter denoted as α-catulin(GFP)), we discover that α-catulin(GFP) is expressed by only 0.
View Article and Find Full Text PDFWe recently reported that local overexpression of VEGF-A in white adipose tissue (WAT) protects against diet-induced obesity and metabolic dysfunction. The observation that VEGF-A induces a "brown adipose tissue (BAT)-like" phenotype in WAT prompted us to further explore the direct function of VEGF-A in BAT. We utilized a doxycycline (Dox)-inducible, brown adipocyte-specific VEGF-A transgenic overexpression model to assess direct effects of VEGF-A in BAT in vivo.
View Article and Find Full Text PDFGenetic analyses indicate that autophagy, an evolutionarily conserved lysosomal degradation pathway, is essential for eukaryotic differentiation and development. However, little is known about whether autophagy contributes to morphogenesis during embryogenesis. To address this question, we examined the role of autophagy in the early development of zebrafish, a model organism for studying vertebrate tissue and organ morphogenesis.
View Article and Find Full Text PDFMol Biol Cell
September 2013
From the point of view of intermolecular interactions, the cytoplasmic space is more like a crowded party in a house full of furniture than a game of tag in an empty field. Understanding the physical chemical properties of cytoplasm is thus of key importance for understanding cellular function. This article attempts to provide an entrée into the current literature on this subject and offers some general guidelines for thinking about intracellular biochemistry.
View Article and Find Full Text PDFMethods Mol Biol
December 2013
Fluorescence microscopy can be used to assess quantitatively the interaction between a ligand and its receptor, between two macromolecules, or between a macromolecule and a particular intracellular compartment by co-localization analysis. In general, this analysis involves tagging potential interacting partners with distinct fluorophores-by direct labeling of a small ligand, by expression of fluorescent cDNA constructs, by immunofluorescence labeling, or by some combination of these methods. Pairwise comparison of the fluorescence intensity of the two fluorophores at each pixel in a two channel digital image of the sample reveals regions where both are present.
View Article and Find Full Text PDFThe LDL receptor (LDLR) supports efficient uptake of both LDL and VLDL remnants by binding lipoprotein at the cell surface, internalizing lipoprotein through coated pits, and releasing lipoprotein in endocytic compartments before returning to the surface for further rounds of uptake. While many aspects of lipoprotein binding and receptor entry are well understood, it is less clear where, when, and how the LDLR releases lipoprotein. To address these questions, the current study employed quantitative fluorescence imaging to visualize the uptake and endosomal processing of LDL and the VLDL remnant β-VLDL.
View Article and Find Full Text PDFTwo of the four WNK (with no lysine (K)) protein kinases are associated with a heritable form of ion imbalance culminating in hypertension. WNK1 affects ion transport in part through activation of the closely related Ste20 family protein kinases oxidative stress-responsive 1 (OSR1) and STE20/SPS1-related proline-, alanine-rich kinase (SPAK). Once activated by WNK1, OSR1 and SPAK phosphorylate and stimulate the sodium, potassium, two chloride co-transporters, NKCC1 and NKCC2, and also affect other related ion co-transporters.
View Article and Find Full Text PDFWe report the development of an all-fiber-optic scanning endomicroscope capable of high-resolution second harmonic generation (SHG) imaging of biological tissues and demonstrate its utility for monitoring the remodeling of cervical collagen during gestation in mice. The endomicroscope has an overall 2.0 mm diameter and consists of a single customized double-clad fiber, a compact rapid two-dimensional beam scanner, and a miniature compound objective lens for excitation beam delivery, scanning, focusing, and efficient SHG signal collection.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
June 2012
Automatically tracking and analyzing the mobility of live subcellular structures will expedite the understanding of signaling pathways, protein-protein interaction, drug delivery, protein synthesis and functionality. Traditional computer vision tracking methods produce yet-to-be-satisfactory results due to the complexity of the particles recorded in spatial-temporal video sequences from confocal images. The difficulties arise from diverse modalities of motion patterns (translational, Brownian, or sessile), changes in behavior during tracking, and cluttered background.
View Article and Find Full Text PDFCaveolin-1 is an integral membrane protein of plasma membrane caveolae. Here we report that caveolin-1 collects at the cytosolic surface of lysosomal membranes when cells are serum starved. This is due to an elevation of the intralysosomal pH, since ionophores and proton pump inhibitors that dissipate the lysosomal pH gradient also trapped caveolin-1 on late endosome/lysosomes.
View Article and Find Full Text PDFSelective autophagy involves the recognition and targeting of specific cargo, such as damaged organelles, misfolded proteins, or invading pathogens for lysosomal destruction. Yeast genetic screens have identified proteins required for different forms of selective autophagy, including cytoplasm-to-vacuole targeting, pexophagy and mitophagy, and mammalian genetic screens have identified proteins required for autophagy regulation. However, there have been no systematic approaches to identify molecular determinants of selective autophagy in mammalian cells.
View Article and Find Full Text PDFATP in bile is a potent secretogogue, stimulating biliary epithelial cell (BEC) secretion through binding apical purinergic receptors. In response to mechanosensitive stimuli, BECs release ATP into bile, although the cellular basis of ATP release is unknown. The aims of this study in human and mouse BECs were to determine whether ATP release occurs via exocytosis of ATP-enriched vesicles and to elucidate the potential role of the vesicular nucleotide transporter SLC17A9 in purinergic signaling.
View Article and Find Full Text PDFA greater understanding of the parturition process is essential in the prevention of preterm birth, which occurs in 12.7% of infants born in the United States annually. Cervical remodeling is a critical component of this process.
View Article and Find Full Text PDFWNK [with no lysine (K)] protein kinases are found in all sequenced multicellular and many unicellular organisms. WNKs influence ion balance. Two WNK family members are associated with a single gene form of hypertension.
View Article and Find Full Text PDF