Background: Species of the carnivorous family Lentibulariaceae exhibit the smallest genomes in flowering plants. We explored the hypothesis that their minute genomes result from the unique mitochondrial cytochrome c oxidase (COX) mutation. The mutation may boost mitochondrial efficiency, which is especially useful for suction-bladder traps of Utricularia, but also increase DNA-damaging reactive oxygen species, leading to genome shrinkage through deletion-biased DNA repair.
View Article and Find Full Text PDFBackground: Fatty acids are essential for human health. Currently, there is a search for alternative sources of fatty acids that could supplement such sources as staple crops or fishes. Turions of aquatic plants accumulate a variety of substances such as starch, free sugars, amino acids, reserve proteins and lipids.
View Article and Find Full Text PDFTurions are vegetative, dormant, and storage overwintering organs formed in perennial aquatic plants in response to unfavorable ecological conditions and originate by extreme condensation of apical shoot segments. The contents of cytokinins, auxins, and abscisic acid were estimated in shoot apices of summer growing, rootless aquatic carnivorous plants, and , and in developing turions at three stages and full maturity to reveal hormonal patterns responsible for turion development. The hormones were analyzed in miniature turion samples using ultraperformance liquid chromatography coupled with triple quadrupole mass spectrometry.
View Article and Find Full Text PDFUtricularia and Genlisea are highly specialized carnivorous plants whose phylogenetic history has been poorly explored using phylogenomic methods. Additional sampling and genomic data are needed to advance our phylogenetic and taxonomic knowledge of this group of plants. Within a comparative framework, we present a characterization of plastome (PT) and mitochondrial (MT) genes of 26 Utricularia and six Genlisea species, with representatives of all subgenera and growth habits.
View Article and Find Full Text PDFPremise: Root-sprouting (RS) is an evolutionarily independent alternative to axillary stem branching for a plant to attain its architecture. Root-sprouting plants are better adapted to disturbance than non-RS plants, and their vigor is frequently boosted by biomass removal. Nevertheless, RS plants are rarer than plants that are not root-sprouters, possibly because they must overcome developmental barriers such as intrinsic phytohormonal balance or because RS ability is conditioned by injury to the plant body.
View Article and Find Full Text PDFCarnivorous plants of the genus (bladderwort) form modified leaves into suction bladder traps. The bladders are metabolically active plant tissue with high rates of mitochondrial respiration (R). In general, plants possess two mitochondrial electron transport pathways to reduce oxygen to water: cytochrome and an alternative.
View Article and Find Full Text PDFBackground And Aims: Aquatic carnivorous plants have typical rootless linear shoots bearing traps and exhibit steep physiological polarity with rapid apical growth. The aim was to analyse auxin and cytokinin metabolites in traps, leaves/shoots and shoot apices in several species of genera Aldrovanda and Utricularia to elucidate how the hormonal profiles reflect the specific organ functions and polarity.
Methods: The main auxin and cytokinin metabolites were analysed in miniature samples (>2 mg dry weight) of different organs of Aldrovanda vesiculosa and six Utricularia species using ultraperformance liquid chromatography coupled with triple quadrupole mass spectrometry.
Sequenced genomic data for carnivorous plants are scarce, especially regarding the mitogenomes (MTs) and further studies are crucial to obtain a better understanding of the topic. In this study, we sequenced and characterized the mitochondrial genome of the tuberous carnivorous plant Genlisea tuberosa, being the first of its genus to be sequenced. The genome comprises 729,765 bp, encoding 80 identified genes of which 36 are protein-coding, 40 tRNA, four rRNA genes, and three pseudogenes.
View Article and Find Full Text PDFTerrestrial carnivorous plants of genera Drosera, Dionaea and Nepenthes within the order Caryophyllales employ jasmonates for the induction of digestive processes in their traps. Here, we focused on two aquatic carnivorous plant genera with different trapping mechanism from distinct families and orders: Aldrovanda (Droseraceae, Caryophyllales) with snap-traps and Utricularia (Lentibulariaceae, Lamiales) with suction traps. Using phytohormone analyses and simple biotest, we asked whether the jasmonates are involved in the activation of carnivorous response similar to that known in traps of terrestrial genera of Droseraceae (Drosera, Dionaea).
View Article and Find Full Text PDFBackground: Carnivorous plants are an ecological group of approx. 810 vascular species which capture and digest animal prey, absorb prey-derived nutrients and utilize them to enhance their growth and development. Extant carnivorous plants have evolved in at least ten independent lineages, and their adaptive traits represent an example of structural and functional convergence.
View Article and Find Full Text PDFThe genus is a Palaeogene element containing a single extant species, L. This aquatic carnivorous herb has a very wide range of distribution, natively covering four continents; however, it is a critically endangered aquatic plant species worldwide. Previous studies revealed that had an extremely low genetic variation.
View Article and Find Full Text PDFAldrovanda vesiculosa (Droseraceae) is a rare aquatic carnivorous plant, distributed in Europe, Asia, Africa, and Australia. Aldrovanda populations can flower prolifically under favourable conditions, but seed set is very limited. We studied the structure of Aldrovanda pollen collected from flowers in different developmental stages (opened and non-opened anthers) from both European and Australian populations to elucidate pollination traits and the basis of poor seed set on the basis of microscopic observation of pollen and anther structure.
View Article and Find Full Text PDFTwo aquatic moss species, and (Amblystegiaceae, Bryophyta), which had been considered extinct in the Czech Republic, were found in the Třeboň Basin, South Bohemia, in 2016-2017. They co-occurred in extensive reed- and sedge-dominated fen pools with humic water on the shore of an old fishpond and the former species was also discovered in a small humic pool in an old shallow sand-pit. The new Czech sites of these rare boreal species represent one of the southernmost known outposts within their entire European range.
View Article and Find Full Text PDFRheophytism is extremely rare in the genus (there are four strictly rheophytic species out of a total of about 260). is an aquatic rheophytic species exclusively growing attached to bedrocks in the South American streams. was considered to be trap-free by some authors, suggesting that it had given up carnivory due to its specific habitat.
View Article and Find Full Text PDFThe host specificity of the recently described ciliate species Tetrahymena utriculariae was tested in a greenhouse growth experiment, which included 14 different species of aquatic Utricularia as potential host plants. We confirmed the high specificity of the interaction between U. reflexa and T.
View Article and Find Full Text PDFMost plants grow and develop by taking up nutrients from the soil while continuously under threat from foraging animals. Carnivorous plants have turned the tables by capturing and consuming nutrient-rich animal prey, enabling them to thrive in nutrient-poor soil. To better understand the evolution of botanical carnivory, we compared the draft genome of the Venus flytrap (Dionaea muscipula) with that of its aquatic sister, the waterwheel plant Aldrovanda vesiculosa, and the sundew Drosera spatulata.
View Article and Find Full Text PDFDue to their ecological, physiological, and molecular adaptations to low and varying temperatures, as well as varying seasonal irradiances, polar non-marine eukaryotic microalgae could be suitable for low-temperature biotechnology. Adaptations include the synthesis of compounds from different metabolic pathways that protect them against stress. Production of biological compounds and various biotechnological applications, for instance, water treatment technology, are of interest to humans.
View Article and Find Full Text PDFare carnivorous plants which have small hollow vesicles as suction traps that work underwater by means of negative pressure and watertightness of the entrance for capturing small animal prey. and have specific thick-walled traps, which are triangular in a transverse section but their functioning is unclear. Some authors suggest that the trap door in acts as a simple valve without a suction trapping mechanism.
View Article and Find Full Text PDFAbstractFollowing publication of the original article [1], the author reported an error in Fig. 3.
View Article and Find Full Text PDFBackground: Utricularia are rootless aquatic carnivorous plants which have recently attracted the attention of researchers due to the peculiarities of their miniaturized genomes. Here, we focus on a novel aspect of Utricularia ecophysiology-the interactions with and within the complex communities of microorganisms colonizing their traps and external surfaces.
Results: Bacteria, fungi, algae, and protozoa inhabit the miniature ecosystem of the Utricularia trap lumen and are involved in the regeneration of nutrients from complex organic matter.
The fast motion of the snap-traps of the terrestrial Venus flytrap () have been intensively studied, in contrast to the tenfold faster underwater snap-traps of its phylogenetic sister, the waterwheel plant (). Based on biomechanical and functional-morphological analyses and on a reverse biomimetic approach via mechanical modelling and computer simulations, we identify a combination of hydraulic turgor change and the release of prestress stored in the trap as essential for actuation. Our study is the first to identify and analyse in detail the motion principle of , which not only leads to a deepened understanding of fast plant movements in general, but also contributes to the question of how snap-traps may have evolved and also allows for the development of novel biomimetic compliant mechanisms.
View Article and Find Full Text PDFIn Utricularia, the flower spur is a nectary and in this organ, nectar is produced and stored. This study aimed to examine the structure of the nectary trichomes in four Utricularia species (Utricularia vulgaris L., U.
View Article and Find Full Text PDFThe carnivorous plant genus Utricularia L. (bladderwort) comprises about 240 species distributed worldwide and is traditionally classified into two subgenera (Polypompholyx and Utricularia) and 35 sections, based mainly on general and trap morphology. It is one out of the largest carnivorous genera, representing ca.
View Article and Find Full Text PDF