Publications by authors named "Lubna Sarwar"

This article demonstrates a mathematical model and theoretical analysis of the Micropolar fluid in the reverse roll coating process. It is important because micropolar fluids account for the microstructure and microrotation of particles within the fluid. These characteristics are significant for accurately describing the behavior of complex fluids such as polymer solutions, biological fluids, and colloidal suspensions.

View Article and Find Full Text PDF

The intended research aims to explore the convection phenomena of a hybrid nanofluid composed of gold and silver nanoparticles. This research is novel and significant because there is a lack of existing studies on the flow behavior of hybrid nanoparticles with important physical properties of blood base fluids, especially in the case of sidewall ruptured dilated arteries. The implementation of combined nanoparticles rather than unadulterated nanoparticles is one of the most crucial elements in boosting the thermal conduction of fluids.

View Article and Find Full Text PDF

Current communication deals with the flow impact of blood inside cosine shape stenotic artery. The under consideration blood flow is treated as Newtonian fluid and flow is assumed to be two dimensional. The governing equation are modelled and solved by adopting similarity transformation under the stenosis assumptions.

View Article and Find Full Text PDF

The blood flow through stenotic artery is one of the important research area in computational fluid mechanics due to its application in biomedicine. Aim of this research work is to investigate the impact of nanoparticles on the characteristics of human blood flow in a stenosed blood artery. In under consideration problem Newtonian fluid is assumed as human blood.

View Article and Find Full Text PDF

In this paper the behavior of flow of blood under stenosis suppositions is studied. Nanoparticles of Ag and Cu are being used with blood as base fluid. The problem governing equations are modeled into PDE's, which are transformed into set of ODE's with the help of useful similarity transformation.

View Article and Find Full Text PDF

In the present article we have studied the radiation effects on the flow of a viscoelastic fluid flow past a spongy plate by considering the viscosity as variable. In order to explore the variable viscosity effects, law of conservation of mass, momentum and energy are flourished. The shooting method is adapted to accomplish the numerical solution of governing equations.

View Article and Find Full Text PDF