Publications by authors named "Lubbers E"

Purpose: The coronavirus (COVID-19) pandemic has caused major healthcare challenges worldwide resulting in an exponential increase in the need for hospital- and intensive care support for COVID-19 patients. As a result, surgical care was restricted to urgent cases of surgery. However, the care for trauma patients is not suitable for reduction or delayed treatment.

View Article and Find Full Text PDF

Myotonic dystrophy type 1 (DM1) is a multisystemic genetic disorder caused by the CTG repeat expansion in the 3'-untranslated region of DMPK gene. Heart dysfunctions occur in ∼80% of DM1 patients and are the second leading cause of DM1-related deaths. Herein, we report that upregulation of a non-muscle splice isoform of RNA-binding protein RBFOX2 in DM1 heart tissue-due to altered splicing factor and microRNA activities-induces cardiac conduction defects in DM1 individuals.

View Article and Find Full Text PDF

Arrhythmogenic cardiomyopathy (ACM) is an inherited arrhythmia syndrome characterized by severe structural and electrical cardiac phenotypes, including myocardial fibrofatty replacement and sudden cardiac death. Clinical management of ACM is largely palliative, owing to an absence of therapies that target its underlying pathophysiology, which stems partially from our limited insight into the condition. Following identification of deceased ACM probands possessing ANK2 rare variants and evidence of ankyrin-B loss of function on cardiac tissue analysis, an ANK2 mouse model was found to develop dramatic structural abnormalities reflective of human ACM, including biventricular dilation, reduced ejection fraction, cardiac fibrosis, and premature death.

View Article and Find Full Text PDF

Spectrins are cytoskeletal proteins essential for membrane biogenesis and regulation and serve critical roles in protein targeting and cellular signaling. αII spectrin () is one of two α spectrin genes and αII spectrin dysfunction is linked to alterations in axon initial segment formation, cortical lamination, and neuronal excitability. Furthermore, human αII spectrin loss-of-function variants cause neurological disease.

View Article and Find Full Text PDF

Rationale: Voltage-gated Na channel ( I) function is critical for normal cardiac excitability. However, the Na channel late component ( I) is directly associated with potentially fatal forms of congenital and acquired human arrhythmia. CaMKII (Ca/calmodulin-dependent kinase II) enhances I in response to increased adrenergic tone.

View Article and Find Full Text PDF

Ankyrin polypeptides are intracellular proteins responsible for targeting cardiac membrane proteins. Here, the authors demonstrate that ankyrin-G plays an unexpected role in normal compensatory physiological remodeling in response to myocardial stress and aging; the authors implicate disruption of ankyrin-G in human heart failure. Mechanistically, the authors illustrate that ankyrin-G serves as a key nodal protein required for cardiac myofilament integration with the intercalated disc.

View Article and Find Full Text PDF

Global obesity rates have nearly tripled since 1975. This obesity rate increase is mirrored by increases in atrial fibrillation (AF) that now impacts nearly 10% of Americans over the age of 65. Numerous epidemiologic studies have linked incidence of AF and obesity and other obesity-related diseases, including hypertension and diabetes.

View Article and Find Full Text PDF

The molecular genetic basis of cotton fiber strength and fineness in crosses between and (Upland cotton) was dissected using 21 BCF and 12 corresponding BCF and BCF families. The BCF families were genotyped with simple sequence repeat markers from a by linkage map, and the three generations of BC-derived families were phenotyped for fiber strength (STR) and fineness (Micronaire, MIC). A total of 42 quantitative trait loci (QTLs) were identified through one-way analysis of variance, including 15 QTLs for STR and 27 for MIC, with the percentage of variance explained by individual loci averaging 13.

View Article and Find Full Text PDF

This study reports transmission genetics of chromosomal segments into Gossypium hirsutum from its most distant euploid relative, Gossypium mustelinum . Mutilocus interactions and structural rearrangements affect introgression and segregation of donor chromatin. Wild allotetraploid relatives of cotton are a rich source of genetic diversity that can be used in genetic improvement, but linkage drag and non-Mendelian transmission genetics are prevalent in interspecific crosses.

View Article and Find Full Text PDF

QTLs for fiber length mapped in three generations of advanced backcross populations derived from crossing Gossypium hirsutum and Gossypium mustelinum showed opportunities to improve elite cottons by introgression from wild relatives. The molecular basis of cotton fiber length in crosses between Gossypium hirsutum and Gossypium mustelinum was dissected using 21 BCF and 12 corresponding BCF and BCF families. Sixty-five quantitative trait loci (QTLs) were detected by one-way analysis of variance.

View Article and Find Full Text PDF

Reversible protein phosphorylation is central to a variety of cardiac processes including excitation-contraction coupling, Ca handling, cell metabolism, myofilament regulation, and cell-cell communication. While kinase pathways linked with elevated adrenergic signaling have been a major focus for the cardiovascular field over the past half century, new findings support the critical role of protein phosphatases in both health and disease. Protein phosphatase 2A (PP2A) is a central cardiac phosphatase that regulates diverse myocyte functions through a host of target molecules.

View Article and Find Full Text PDF

Background: Human ANK2 (ankyrin-B) loss-of-function variants are directly linked with arrhythmia phenotypes. However, in atypical non-ion channel arrhythmia genes such as ANK2 that lack the same degree of robust structure/function and clinical data, it may be more difficult to assign variant disease risk based simply on variant location, minor allele frequency, and/or predictive structural algorithms. The human ankyrin-B p.

View Article and Find Full Text PDF

Chronic, low grade, sterile inflammation frequently accompanies aging and age-related diseases. Cellular senescence is associated with the production of proinflammatory chemokines, cytokines, and extracellular matrix (ECM) remodeling proteases, which comprise the senescence-associated secretory phenotype (SASP). We found a higher burden of senescent cells in adipose tissue with aging.

View Article and Find Full Text PDF

Background: Growth hormone (GH)-resistant/deficient mice experience improved glucose homeostasis and substantially increased lifespan. Recent evidence suggests that long-lived GH-resistant/deficient mice are protected from white adipose tissue (WAT) dysfunction, including WAT cellular senescence, impaired adipogenesis and loss of subcutaneous WAT in old age. This preservation of WAT function has been suggested to be a potential mechanism for the extended lifespan of these mice.

View Article and Find Full Text PDF

GH influences adipocyte differentiation, but both stimulatory and inhibitory effects have been described. Adipose tissue-derived mesenchymal stem cells (AT-MSCs) are multipotent and are able to differentiate into adipocytes, among other cells. Canonical Wnt/β-catenin signaling activation impairs adipogenesis.

View Article and Find Full Text PDF

White adipose tissue (WAT) is composed of mature adipocytes and a stromal vascular fraction (SVF), which contains a variety of cells, including immune cells that vary among the different WAT depots. Growth hormone (GH) impacts immune function and adiposity in an adipose depot-specific manner. However, its effects on WAT immune cell populations remain unstudied.

View Article and Find Full Text PDF

Reduced GH levels have been associated with improved glucose metabolism and increased longevity despite obesity in multiple mouse lines. However, one mouse line, the GH receptor antagonist (GHA) transgenic mouse, defies this trend because it has reduced GH action and increased adiposity, but glucose metabolism and life span are similar to controls. Slight differences in glucose metabolism and adiposity profiles can become exaggerated on a high-fat (HF) diet.

View Article and Find Full Text PDF

The aging process is associated with the development of several chronic diseases. White adipose tissue (WAT) may play a central role in age-related disease onset and progression due to declines in adipogenesis with advancing age. Recent reports indicate that the accumulation of senescent progenitor cells may be involved in age-related WAT dysfunction.

View Article and Find Full Text PDF

Growth hormone receptor-null (GHR(-/-)) mice are dwarf, insulin sensitive, and long-lived in spite of increased adiposity. However, their adiposity is not uniform, with select white adipose tissue (WAT) depots enlarged. To study WAT depot-specific effects on insulin sensitivity and life span, we analyzed individual WAT depots of 12- and 24-month-old GHR(-) (/-) and wild-type (WT) mice, as well as their plasma levels of selected hormones.

View Article and Find Full Text PDF

Reduced growth hormone (GH) action is associated with extended longevity in many vertebrate species. GH receptor (GHR) null (GHR(-)(/-)) mice, which have a disruption in the GHR gene, are a well-studied example of mice that are insulin sensitive and long lived yet obese. However, unlike other mouse lines with reduced GH action, GH receptor antagonist (GHA) transgenic mice have reduced GH action yet exhibit a normal, not extended, life span.

View Article and Find Full Text PDF

GH receptor (GHR) gene-disrupted mice (GHR-/-) have provided countless discoveries as to the numerous actions of GH. Many of these discoveries highlight the importance of GH in adipose tissue. For example GHR-/- mice are insulin sensitive yet obese with preferential enlargement of the sc adipose depot.

View Article and Find Full Text PDF