Publications by authors named "Lubaid Saleh"

CDK 4/6 inhibitors have demonstrated significant improved survival for patients with estrogen receptor (ER) positive breast cancer (BC). However, the ability of these promising agents to inhibit bone metastasis from either ER+ve or triple negative BC (TNBC) remains to be established. We therefore investigated the effects of the CDK 4/6 inhibitor, palbociclib, using in vivo models of breast cancer bone metastasis.

View Article and Find Full Text PDF

Triple negative breast cancer (TNBC) cells lack expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER-2). Thus, TNBC does not respond to hormone-based therapy. TNBC is also an aggressive subtype associated with poorer prognoses compared to other breast cancers.

View Article and Find Full Text PDF

Zeb1, a zinc finger E-box binding homeobox epithelial-mesenchymal transition (EMT) transcription factor, confers properties of "stemness," such as self-renewal, in cancer. Yet little is known about the function of Zeb1 in adult stem cells. Here, we used the hematopoietic system as a well-established paradigm of stem cell biology to evaluate Zeb1-mediated regulation of adult stem cells.

View Article and Find Full Text PDF

Breast cancer (BC) is one of the leading causes of cancer-related deaths worldwide. Standard therapies aim to disrupt pathways that regulate the growth and survival of BC cells. Therapeutic agents such as endocrine therapy target hormone dependent cancer cells and have shown to be suitable approaches in BC treatment.

View Article and Find Full Text PDF

Subversion of transcription factor (TF) activity in hematopoietic stem/progenitor cells (HSPCs) leads to the development of therapy-resistant leukemic stem cells (LSCs) that drive fulminant acute myeloid leukemia (AML). Using a conditional mouse model where zinc-finger TF Gata2 was deleted specifically in hematopoietic cells, we show that knockout of Gata2 leads to rapid and complete cell-autonomous loss of adult hematopoietic stem cells. By using short hairpin RNAi to target GATA2, we also identify a requirement for GATA2 in human HSPCs.

View Article and Find Full Text PDF

Bone marrow resident hematopoietic stem cells (HSCs) are responsible for the lifetime generation of the wide profusion of blood and immune cell types found in the body. In addition, therapeutically, in the context of bone marrow transplantation, HSCs have been successfully deployed to restore normal blood-forming capacity in patients being treated with high-dose chemotherapy for hematologic malignancies. The known ability of bone marrow transplantation to either restore or reset the immune system and to engender immune tolerance has suggested that HSCs may be applied therapeutically for a wider range of clinical conditions, including immunological/autoimmune disorders and allogeneic organ transplantation.

View Article and Find Full Text PDF