Chemical modifications of transcripts with a 5' cap occur in all organisms and function in many aspects of RNA metabolism. To facilitate analysis of RNA caps, we developed a systems-level mass spectrometry-based technique, CapQuant, for accurate and sensitive quantification of the cap epitranscriptome. The protocol includes the addition of stable isotope-labeled cap nucleotides (CNs) to RNA, enzymatic hydrolysis of endogenous RNA to release CNs, and off-line enrichment of CNs by ion-pairing high-pressure liquid chromatography, followed by a 17 min chromatography-coupled tandem quadrupole mass spectrometry run for the identification and quantification of individual CNs.
View Article and Find Full Text PDFData-independent acquisition (DIA) mass spectrometry-based proteomics generates reproducible proteome data. The complex processing of the DIA data has led to the development of multiple data analysis tools. In this study, we assessed the performance of five tools (OpenSWATH, EncyclopeDIA, Skyline, DIA-NN, and Spectronaut) using six DIA datasets obtained from TripleTOF, Orbitrap, and TimsTOF Pro instruments.
View Article and Find Full Text PDFDuring embryo development, DNA methylation is established by DNMT3A/3B and subsequently maintained by DNMT1. While much research has been done in this field, the functional significance of DNA methylation in embryogenesis remains unknown. Here, we establish a system of simultaneous inactivation of multiple endogenous genes in zygotes through screening for base editors that can efficiently introduce a stop codon.
View Article and Find Full Text PDFHigh-throughput lysis and proteolytic digestion of biopsy-level tissue specimens is a major bottleneck for clinical proteomics. Here we describe a detailed protocol of pressure cycling technology (PCT)-assisted sample preparation for proteomic analysis of biopsy tissues. A piece of fresh frozen or formalin-fixed paraffin-embedded tissue weighing ~0.
View Article and Find Full Text PDFThe utility of the urinary proteome in infectious diseases remains unclear. Here, we analyzed the proteome and metabolome of urine and serum samples from patients with COVID-19 and healthy controls. Our data show that urinary proteins effectively classify COVID-19 by severity.
View Article and Find Full Text PDFRT-PCR is the primary method to diagnose COVID-19 and is also used to monitor the disease course. This approach, however, suffers from false negatives due to RNA instability and poses a high risk to medical practitioners. Here, we investigated the potential of using serum proteomics to predict viral nucleic acid positivity during COVID-19.
View Article and Find Full Text PDFEfficient peptide and protein identifications from data-independent acquisition mass spectrometric (DIA-MS) data typically rely on a project-specific spectral library with a suitable size. Here, we describe subLib, a computational strategy for optimizing the spectral library for a specific DIA data set based on a comprehensive spectral library, requiring the preliminary analysis of the DIA data set. Compared with the pan-human library strategy, subLib achieved a 41.
View Article and Find Full Text PDFBiomarkers are assayed to assess biological and pathological status. Recent advances in high-throughput proteomic technology provide opportunities for developing next generation biomarkers for clinical practice aided by artificial intelligence (AI) based techniques. We summarize the advances and limitations of cancer biomarkers based on genomic and transcriptomic analysis, as well as classical antibody-based methodologies.
View Article and Find Full Text PDFSerum lactate dehydrogenase (LDH) has been established as a prognostic indicator given its differential expression in COVID-19 patients. However, the molecular mechanisms underneath remain poorly understood. In this study, 144 COVID-19 patients were enrolled to monitor the clinical and laboratory parameters over 3 weeks.
View Article and Find Full Text PDFThe molecular pathology of multi-organ injuries in COVID-19 patients remains unclear, preventing effective therapeutics development. Here, we report a proteomic analysis of 144 autopsy samples from seven organs in 19 COVID-19 patients. We quantified 11,394 proteins in these samples, in which 5,336 were perturbed in the COVID-19 patients compared to controls.
View Article and Find Full Text PDFSummary: The rapid progresses of high-throughput sequencing technology-based omics and mass spectrometry-based proteomics, such as data-independent acquisition and its penetration to clinical studies have generated increasing number of proteomic datasets containing hundreds to thousands of samples. To analyze these quantitative proteomic datasets and other omics (e.g.
View Article and Find Full Text PDFThe liver and gallbladder are among the most important internal organs derived from the endoderm, yet the development of the liver and gallbladder in the early embryonic stages is not fully understood. Using a transgenic Foxa2 reporter mouse line, we performed single-cell full-length mRNA sequencing on endodermal and hepatic cells isolated from ten embryonic stages, ranging from E7.5 to E15.
View Article and Find Full Text PDFNucleic Acids Res
November 2019
Chemical modification of transcripts with 5' caps occurs in all organisms. Here, we report a systems-level mass spectrometry-based technique, CapQuant, for quantitative analysis of an organism's cap epitranscriptome. The method was piloted with 21 canonical caps-m7GpppN, m7GpppNm, GpppN, GpppNm, and m2,2,7GpppG-and 5 'metabolite' caps-NAD, FAD, UDP-Glc, UDP-GlcNAc, and dpCoA.
View Article and Find Full Text PDFThe capacity of embryonic stem cells (ESCs) to differentiate into all lineages of mature organism is precisely regulated by cellular signaling factors. STAT3 is a crucial transcription factor that plays a central role in maintaining ESC identity. However, the underlying mechanism by which STAT3 directs differentiation is still not completely understood.
View Article and Find Full Text PDFChemical RNA modifications are central features of epitranscriptomics, highlighted by the discovery of modified ribonucleosides in mRNA and exemplified by the critical roles of RNA modifications in normal physiology and disease. Despite a resurgent interest in these modifications, the biochemistry of 3-methylcytidine (mC) formation in mammalian RNAs is still poorly understood. However, the recent discovery of as the second gene responsible for mC presence in RNA in fission yeast raises the possibility that multiple enzymes are involved in mC formation in mammals as well.
View Article and Find Full Text PDF