Publications by authors named "Luana Sasso"

A small library of thermoresponsive amphiphilic copolymers based on polylactide-block-poly((2-(2-methoxyethoxy)ethyl methacrylate)-co-(oligoethylene glycol methacrylate)) (PLA-b-P(DEGMA)-co-(OEGMA)), was synthesised by copper-mediated controlled radical polymerisation (CRP) with increasing ratios of OEGMA : DEGMA. These polymers were combined in two ways to form nanoparticles with controllable thermal transition temperatures as measured by particle aggregation. The first technique involved the blending of two (PLA-b-P(DEGMA)-co-(OEGMA)) polymers together prior to assembling nanoparticles (NPs).

View Article and Find Full Text PDF

MiRNAs are small noncoding RNAs vital for protein regulation and gene expression. Since their discovery in the early nineties, many of their intracellular roles have been characterized. However, it is only recently that EVs loaded with miRNAs and other molecular types have started to be appreciated for their substantial involvement in cell-to-cell communication and signaling in physiological and pathological processes.

View Article and Find Full Text PDF

Materials for delivery of oligonucleotides need to be simple to produce yet effective in vivo to be considered for clinical applications. Formulations of biomaterials based on combinations of existing demonstrated polymeric gene carriers with targeted derivatives are potential candidates for rapid translation but have not been fully explored for siRNA applications. Here we investigated formulations based on derivatised PEI for delivery of siRNA to gastrointestinal cancer cells.

View Article and Find Full Text PDF

New pH-responsive polymersomes for active anticancer oligonucleotide delivery were prepared from triblock copolymers. The delivery systems were formed by two terminal hydrophilic blocks, PEG and polyglycerolmethacrylate (poly-GMA), and a central weakly basic block, polyimidazole-hexyl methacrylate (poly-ImHeMA), which can complex with oligonucleotides and control vesicle formation/disassembly via pH variations. Targeted polymersomes were prepared by mixing folate-derivatized and underivatized copolymers.

View Article and Find Full Text PDF