Gels
December 2024
Temporomandibular disorders (TMD) are a public health problem that affects around 12% of the global population. The treatment is based on analgesics, non-steroidal anti-inflammatory, corticosteroids, anticonvulsants, or arthrocentesis associated with hyaluronic acid-based viscosupplementation. However, the use of hyaluronic acid alone in viscosupplementation does not seem to be enough to regulate the intra-articular inflammatory process.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
September 2024
The objective of the present study was to evaluate the carbon fiber obtained from textile PAN fiber, in its different forms, as a potential scaffolds synthetic bone. Thirty-four adult rats were used (Rattus norvegicus, albinus variation), two critical sized bone defects were made that were 5 mm in diameter. Twenty-four animals were randomly divided into four groups: control (C)-bone defect + blood clot, non-activated carbon fiber felt (NACFF)-bone defect + NACFF, activated carbon fiber felt (ACFF)-bone defect + ACFF, and silver activated carbon fiber felt (Ag-ACFF)-bone defect + Ag-ACFF, and was observed by 15 and 60 days for histomorphometric, three-dimensional computerized microtomography (microCT) and mineral apposition analysis.
View Article and Find Full Text PDFObjectives: Chemoprevention can be a treatment for potentially malignant lesions (PMLs). We aimed to evaluate whether artemisinin (ART) and cisplatin (CSP) are associated with apoptosis and immunogenic cell death (ICD) in vitro, using oral leukoplakia (OL) and oral squamous cell carcinoma (OSCC) cell lines, and whether these compounds prevent OL progression in vivo.
Methods: Normal keratinocytes (HaCat), Dysplastic oral cells (DOK), and oral squamous cell carcinoma (SCC-180) cell lines were treated with ART, CSP, and ART + CSP to analyze cytotoxicity, genotoxicity, cell migration, and increased expression of proteins related to apoptosis and ICD.
J Biomater Sci Polym Ed
July 2024
In recent years, there has been a notable surge of interest in hybrid materials within the biomedical field, particularly for applications in bone repair and regeneration. Ceramic-polymeric hybrid scaffolds have shown promising outcomes. This study aimed to synthesize bioactive glass (BG-58S) for integration into a bioresorbable polymeric matrix based on PDLLA, aiming to create a bioactive scaffold featuring stable pH levels.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
February 2024
Zirconia implants are gaining attention as a viable alternative to titanium implants due to their comparable osseointegration development, improved soft tissue adaptation, and enhanced aesthetics. An encouraging avenue for improving zirconia implant properties involves the potential application of bioactive coatings to their surfaces. These coatings have shown potential for inducing hydroxyapatite formation, crucial for bone proliferation, and improving implant mechanical properties.
View Article and Find Full Text PDFThe development of bioactive membranes with bone repair properties is great interest in the field of tissue engineering. In this study, we aimed to fabricate and characterize a composite membrane composed of sol-gel synthesized bioceramics and electrospun polycaprolactone (PCL) fibers for bone tissue regeneration applications. The bioceramics were prepared using the sol-gel method with nitrate (N) and chloride (CL) as precursors.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
November 2023
This study aimed to evaluate the Carbon Fiber obtained from PAN textile and cotton fiber in their different forms of presentation: non-activated carbon fiber felt (NACFF), activated carbon fiber felt (ACFF), silver activated carbon fiber felt (Ag-ACFF), and activated carbon fiber tissue (ACFT), to obtain scaffolds as a potential material with properties related to the synthetic bone graft. Characterization tests performed: surface wettability, traction, swelling, and in vivo tests: evaluation of the inflammatory response by implanting the materials in the subcutaneous tissue of 14 Wistar rats, evaluation of collagen fibers by picrosirius red staining and assessment of toxicity in the following organs: heart, spleen, liver, and kidney. In the wettability test, NACFF and ACFT were hydrophobic (θ124° and 114°), ACFF and Ag-ACFF were hydrophilic.
View Article and Find Full Text PDFThe objective of this study was to investigate the osteogenic and antimicrobial effect of bioactive glass S53P4 incorporated into β-tricalcium phosphate (β-TCP) scaffolds in vitro and the bone neoformation in vivo. β-TCP and β-TCP/S53P4 scaffolds were prepared by the gel casting method. Samples were morphologically and physically characterized through X-ray diffraction (XRD) and scanning electron microscope (SEM).
View Article and Find Full Text PDFJ Funct Biomater
February 2023
With the increase in the population's life expectancy, there has also been an increase in the rate of osteoporosis, which has expanded the search for strategies to regenerate bone tissue. The ultrasonic sonochemical technique was chosen for the functionalization of the 45S5 bioglass. The samples after the sonochemical process were divided into (a) functionalized bioglass (BG) and (b) functionalized bioglass with 10% teriparatide (BGT).
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2023
The development of nanoscale biomaterials associated with polymers has been growing over the years, due to their important structural characteristics for applications in biological systems. The present study aimed to produce and test polymeric scaffolds composed of polylactic acid (PLA) fibers associated with a 58S bioglass doped with therapeutic ions for use in tissue engineering. Three 58S Bioglass was obtained by the sol-gel route, pure and doped with 5% strontium and cobalt ions.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2023
The objective was to synthesize and characterize fine polycaprolactone (PCL) fibers associated with a new 58S bioglass obtained by the precipitated sol-gel route, produced by the electrospinning process in order to incorporate therapeutic ions (Mg and Li). In PCL/acetone solutions were added 7% pure bioglass, bioglass doped with Mg(NO ) and Li CO and were subjected to electrospinning process. The fibers obtained were characterized morphologically, chemically and biologically.
View Article and Find Full Text PDFBackground: Several studies proved that anodic oxidation improves osseointegration. This study aimed to optimize osseointegration through anodization in dental implants, obtaining anatase phase and controlled nanotopography.
Methods: The division of the groups with 60 titanium implants was: control (CG); sandblasted (SG); anodized (AG): anodized pulsed current (duty cycle 30%, 30 V, 0.
Background: Nanostructured surface modifications of Ti-based biomaterials are moving up from a highly-promising to a successfully-implemented approach to developing safe and reliable implants.
Methods: The study's main objective is to help consolidate the knowledge and identify the more suitable experimental strategies related to TiO nanotubes-modified surfaces. In this sense, it proposes the thorough investigation of two optimized nanotubes morphologies in terms of their biological activity (cell cytotoxicity, alkaline phosphatase activity, alizarin red mineralization test, and cellular adhesion) and their electrochemical behavior in simulated body fluid (SBF) electrolyte.
Int J Implant Dent
October 2020
Background: An effective biomaterial for bone replacement should have properties to avoid bacterial contamination and promote bone formation while inducing rapid cell differentiation simultaneously. Bone marrow stem cells are currently being investigated because of their known potential for differentiation in osteoblast lineage. This makes these cells a good option for stem cell-based therapy.
View Article and Find Full Text PDFObjectives: The present study aims to evaluate two protocols of pulsed electromagnetic field (PEMF) on osseointegration and establish one that addresses ideal parameters for its use in dentistry, especially in the optimization of the implants osseointegration process.
Materials And Methods: Sixty male rats (Wistar) were allocated into three experimental groups: control (GC), test A (GTA, 3 h exposed), and test B (GTB, 1 h exposed). All animals received titanium implants in both tibias, and PEMF application (15 Hz, ± 1 mT, 5 days/week) occurred only in the test groups.
Mater Sci Eng C Mater Biol Appl
December 2020
Polymer membranes have been widely used in guided bone regeneration (GBR), especially when it comes to their use in dentistry. Poly (lactic acid) (PLA) have good mechanical properties such as flexibility, which allows the material to be moldable and also has biocompatibility and biodegradation. Besides that, bioglass (BG) incorporated into the polymer matrix can promote osteoinduction properties and osteoconduction properties to the polymer-ceramic biocomposite.
View Article and Find Full Text PDFInt J Biomater
July 2020
J Mater Sci Mater Med
April 2020
Biomaterials may be useful in filling lost bone portions in order to restore balance and improve bone regeneration. The objective of this study was to produce polycaprolactone (PCL) membranes combined with two types of bioglass (Sol-Gel and melt-quenched) and determine their physical and biological properties. Membranes were produced through electrospinning.
View Article and Find Full Text PDFCalcium aluminate cement (CAC) as a biomaterial has been evaluated for its physical, mechanical and biocompatibility properties. Furthermore, the application of CAC for bone repair is due to its composition and coefficient of thermal expansion, which is similar to that of human bone. Thus, the aim of this study was to evaluate compositions of CAC-based blends as substitutes for bone defects.
View Article and Find Full Text PDFDiamond-like carbon (DLC) film is a biocompatible hard coating material that can prevent the leaching of metal ions. This study evaluates the structural characteristics of DLC, with and without silver nanoparticles, deposited by plasma (PECVD) on titanium alloy (Ti-6Al-4V) and bone formation in contact with DLC films. Sixty Ti-6Al-4V samples were used divided in: uncoated, coated with DLC and coated with DLC-Ag.
View Article and Find Full Text PDFJ Mater Sci Mater Med
September 2019
Biological effects of titanium (Ti) alloys were analyzed on biofilms of Candida albicans, Enterococcus faecalis, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus mutans, and Streptococcus sanguinis, as well as on osteoblast-like cells (MG63) and murine macrophages (RAW 264.7). Standard samples composed of aluminum and vanadium (Ti-6Al-4V), and sample containing niobium (Ti-35Nb) and zirconium (Ti-13Nb-13Zr) were analyzed.
View Article and Find Full Text PDFCarbon nanotubes combine high bend and mechanical strength, which is advantageous for many structural and biomedical purposes. Recently, some biomaterials, based on carbon nanostructures and nanohydroxyapatite (nHAp), have been investigated as bone substitutes in order to improve regeneration. The aim of this study was to access the expression of some RNA transcripts (involved in the process of osteoblast differentiation) by mesenchymal stem cells cultured over different nanocomposite surfaces.
View Article and Find Full Text PDFObjectives: Evaluate the modulating effect of ionizing radiation, blood cytokine levels, and bone remodeling of the interface around the implant to understand the radiation mechanisms which can impair the implants receptor site.
Material And Methods: Sixty rats were submitted to grade V titanium implants in the femurs and were divided into the following groups: no-irradiation (N-Ir): control group with implant only; early-irradiation (E-Ir): implant + irradiation after 24 h; late-irradiation (L-Ir): implant + irradiation after 4 weeks; and previous-irradiation (P-Ir): irradiation + implant after 4 weeks. The animals in the E-Ir, L-Ir, and P-Ir groups were irradiated in two fractional stages of 15 Gy.
J Oral Biol Craniofac Res
April 2019
Unlabelled: Increasingly more young patients have been submitted to reconstruction of the Temporomandibular Joint (TMJ), so, the prostheses must to present more functional longevity.
Objective: To evaluate the effect of diamond-like carbon film (DLC) over titanium alloy (Ti6Al4V) and polyethylene (UHWPE) samples, their mechanical and chemical properties and cellular cytotoxicity.
Methods: Titanium and UHWPE specimens, with 2.
Objective: To investigate the effects of sitagliptin, a dipeptidyl peptidase 4 inhibitor used to treat type II diabetes, on bone tissue and on implant osseointegration in diabetic rats.
Design: Thirty-two male rats were divided into four groups: 1) Diabetic animals (GD); 2) Diabetic animals that received sitagliptin (GDS); 3) Normoglycemic animals (GN); and 4) Normoglycemic animals that received sitagliptin (GNS). All animals received titanium implants in the right tibia.