Cholangiocarcinoma (CCA) and other liver cancer subtypes often develop in damaged organs. Physiological agents or extrinsic factors, like toxins, can induce cell death in such tissues, triggering compensatory proliferation and inflammation. Depending on extracellular and intracellular factors, different mechanisms, like apoptosis, necroptosis, ferroptosis, or autophagy, can be triggered.
View Article and Find Full Text PDFBackground & Aims: Primary liver cancer (PLC) comprises hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA), two frequent and lethal tumour types that differ regarding their tumour biology and responses to cancer therapies. Liver cells harbour a high degree of cellular plasticity and can give rise to either HCC or iCCA. However, little is known about the cell-intrinsic mechanisms directing an oncogenically transformed liver cell to either HCC or iCCA.
View Article and Find Full Text PDFThe success of molecular therapies targeting specific metabolic pathways in cancer is often limited by the plasticity and adaptability of metabolic networks. Here we show that pharmacologically induced lipotoxicity represents a promising therapeutic strategy for the treatment of hepatocellular carcinoma (HCC). LXRα-induced liponeogenesis and Raf-1 inhibition are synthetic lethal in HCC owing to a toxic accumulation of saturated fatty acids.
View Article and Find Full Text PDFDeregulated expression of the MYC oncoprotein enables tumor cells to evade immune surveillance, but the mechanisms underlying this surveillance are poorly understood. We show here that endogenous MYC protects pancreatic ductal adenocarcinoma (PDAC) driven by KRAS and TP53 from eradication by the immune system. Deletion of TANK-binding kinase 1 (TBK1) bypassed the requirement for high MYC expression.
View Article and Find Full Text PDFPrognosis of combined hepatocellular carcinoma-intrahepatic cholangiocarcinoma, a type of primary liver cancer comprising areas with HCC and ICC histopathology, is dismal, and it is unclear if such tumors develop clonally and how they should be treated. In this issue of Cancer Cell, Xue et al. (2019) provide answers to these questions.
View Article and Find Full Text PDFIn this Article, the pCaMIN construct consisted of 'mouse MYC and mouse Nras' instead of 'mouse Myc and human NRAS; and the pCAMIA construct consisted of 'mouse Myc and human AKT1' instead of 'mouse Myc and Akt1' this has been corrected online.
View Article and Find Full Text PDFPrimary liver cancer represents a major health problem. It comprises hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC), which differ markedly with regards to their morphology, metastatic potential and responses to therapy. However, the regulatory molecules and tissue context that commit transformed hepatic cells towards HCC or ICC are largely unknown.
View Article and Find Full Text PDFAlthough it is well established that TNFα contributes to hepatitis, liver failure and associated hepatocarcinogenesis via the regulation of inflammation, its pro-apoptotic role in the liver has remained enigmatic. On its own, TNFα is unable to trigger apoptosis. However, when combined with the transcriptional inhibitor GaLN, it can cause hepatocyte apoptosis and liver failure in mice.
View Article and Find Full Text PDFOncogene-induced senescence is a potent tumor-suppressive response. Paradoxically, senescence also induces an inflammatory secretome that promotes carcinogenesis and age-related pathologies. Consequently, the senescence-associated secretory phenotype (SASP) is a potential therapeutic target.
View Article and Find Full Text PDFThe c-myc proto-oncogene is activated by translocation in Burkitt's lymphoma and substitutions in codon 58 stabilize the Myc protein or augment its oncogenic potential. In wild-type Myc, phosphorylation of Ser 62 and Thr 58 provides a landing pad for the peptidyl prolyl-isomerase Pin1, which in turn promotes Ser 62 dephosphorylation and Myc degradation. However, the role of Pin1 in Myc-induced lymphomagenesis remains unknown.
View Article and Find Full Text PDFA precise balance between quiescence and proliferation is crucial for the lifelong function of hematopoietic stem cells (HSCs). Cyclins E1 and E2 regulate exit from quiescence in fibroblasts, but their role in HSCs remains unknown. Here, we report a non-redundant role for cyclin E1 in mouse HSCs.
View Article and Find Full Text PDFOncogene-induced replicative stress activates an Atr- and Chk1-dependent response, which has been proposed to be widespread in tumors. We explored whether the presence of replicative stress could be exploited for the selective elimination of cancer cells. To this end, we evaluated the impact of targeting the replicative stress-response on cancer development.
View Article and Find Full Text PDF