Publications by authors named "Luan Pereira Diniz"

Introduction: Brain aging involves a complex interplay of cellular and molecular changes, including metabolic alterations and the accumulation of senescent cells. These changes frequently manifest as dysregulation in glucose metabolism and mitochondrial function, leading to reduced energy production, increased oxidative stress, and mitochondrial dysfunction-key contributors to age-related neurodegenerative diseases.

Methods: We conducted experiments on two models: young (3-4 months) and aged (over 18 months) mice, as well as cultures of senescent and control mouse astrocytes.

View Article and Find Full Text PDF

Aging disrupts brain function, leading to cognitive decline and neurodegenerative diseases. Senescent astrocytes, a hallmark of aging, contribute to this process through unknown mechanisms. This study investigates how senescence impacts astrocytic mitochondrial dynamics, which are critical for brain health.

View Article and Find Full Text PDF

Background And Purpose: Inhibitors of histone deacetylases (iHDACs) are promising drugs for neurodegenerative diseases. We have evaluated the therapeutic potential of the new iHDAC LASSBio-1911 in Aβ oligomer (AβO) toxicity models and astrocytes, key players in neuroinflammation and Alzheimer's disease (AD).

Experimental Approach: Astrocyte phenotype and synapse density were evaluated by flow cytometry, Western blotting, immunofluorescence and qPCR, in vitro and in mice.

View Article and Find Full Text PDF

Aging is marked by complex and progressive physiological changes, including in the glutamatergic system, that lead to a decline of brain function. Increased content of senescent cells in the brain, such as glial cells, has been reported to impact cognition both in animal models and human tissue during normal aging and in the context of neurodegenerative disease. Changes in the glutamatergic synaptic activity rely on the glutamate-glutamine cycle, in which astrocytes handle glutamate taken up from synapses and provide glutamine for neurons, thus maintaining excitatory neurotransmission.

View Article and Find Full Text PDF

The increase in senescent cells in tissues, including the brain, is a general feature of normal aging and age-related pathologies. Senescent cells exhibit a specific phenotype, which includes an altered nuclear morphology and transcriptomic changes. Astrocytes undergo senescence in vitro and in age-associated neurodegenerative diseases, but little is known about whether this process also occurs in physiological aging, as well as its functional implication.

View Article and Find Full Text PDF

Arboviruses pose a major threat throughout the world and represent a great burden in tropical countries of South America. Although generally associated with moderate febrile illness, in more severe cases they can lead to neurological outcomes, such as encephalitis, Guillain-Barré syndrome, and Congenital Syndromes. In this context astrocytes play a central role in production of inflammatory cytokines, regulation of extracellular matrix, and control of glutamate driven neurotoxicity in the central nervous system.

View Article and Find Full Text PDF

α-Synuclein protein (α-syn) is a central player in Parkinson's disease (PD) and in a spectrum of neurodegenerative diseases collectively known as synucleinopathies. These diseases are characterized by abnormal motor symptoms, such as tremor at rest, slowness of movement, rigidity of posture, and bradykinesia. Histopathological features of PD include preferential loss of dopaminergic neurons in the substantia nigra and formation of fibrillar intraneuronal inclusions called Lewy bodies and Lewy neurites, which are composed primarily of the α-syn protein.

View Article and Find Full Text PDF

Parkinson's disease (PD) is characterized by selective death of dopaminergic neurons in the substantia nigra, degeneration of the nigrostriatal pathway, increases in glutamatergic synapses in the striatum and aggregation of α-synuclein. Evidence suggests that oligomeric species of α-synuclein (αSO) are the genuine neurotoxins of PD. Although several studies have supported the direct neurotoxic effects of αSO on neurons, their effects on astrocytes have not been directly addressed.

View Article and Find Full Text PDF

Transforming growth factor betas (TGF-βs) are known as multifunctional growth factors that participate in the regulation of key events of development, disease, and tissue repair. In the brain, TGF-β1 has been widely recognized as an injury-related cytokine, particularly associated with astrocyte scar formation in response to brain injury. In the last decade, however, evidence has indicated that in addition to its role in brain injury, TGF-β1 might be a crucial regulator of cell survival and differentiation, brain homeostasis, angiogenesis, memory formation, and neuronal plasticity.

View Article and Find Full Text PDF

Synaptopathy underlying memory deficits in Alzheimer's disease (AD) is increasingly thought to be instigated by toxic oligomers of the amyloid beta peptide (AβOs). Given the long latency and incomplete penetrance of AD dementia with respect to Aβ pathology, we hypothesized that factors present in the CNS may physiologically protect neurons from the deleterious impact of AβOs. Here we employed physically separated neuron-astrocyte cocultures to investigate potential non-cell autonomous neuroprotective factors influencing AβO toxicity.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by progressive cognitive decline, increasingly attributed to neuronal dysfunction induced by amyloid-β oligomers (AβOs). Although the impact of AβOs on neurons has been extensively studied, only recently have the possible effects of AβOs on astrocytes begun to be investigated. Given the key roles of astrocytes in synapse formation, plasticity, and function, we sought to investigate the impact of AβOs on astrocytes, and to determine whether this impact is related to the deleterious actions of AβOs on synapses.

View Article and Find Full Text PDF

Background: Na/K-ATPase (NKA) is inhibited by perillyl alcohol (POH), a monoterpene used in the treatment of tumors, including brain tumors. The NKA α1 subunit is known to be superexpressed in glioblastoma cells (GBM). This isoform is embedded in caveolar structures and is probably responsible for the signaling properties of NKA during apoptosis.

View Article and Find Full Text PDF

Brain function depends critically on the coordinated activity of presynaptic and postsynaptic signals derived from both neurons and non-neuronal elements such as glial cells. A key role for astrocytes in neuronal differentiation and circuitry formation has emerged within the last decade. Although the function of glial cells in synapse formation, elimination and efficacy has greatly increased, we are still very far from deeply understanding the molecular and cellular mechanism underlying these events.

View Article and Find Full Text PDF

The balance between excitatory and inhibitory synaptic inputs is critical for the control of brain function. Astrocytes play important role in the development and maintenance of neuronal circuitry. Whereas astrocytes-derived molecules involved in excitatory synapses are recognized, molecules and molecular mechanisms underlying astrocyte-induced inhibitory synapses remain unknown.

View Article and Find Full Text PDF

Assembly of synapses requires proper coordination between pre- and postsynaptic elements. Identification of cellular and molecular events in synapse formation and maintenance is a key step to understand human perception, learning, memory, and cognition. A key role for astrocytes in synapse formation and function has been proposed.

View Article and Find Full Text PDF

HK (hexokinase) is an enzyme involved in the first step in the glucose metabolism pathway, converting glucose into G6P (glucose 6-phosphate). Owing to the importance of skeletal muscle for fish swimming and acclimation processes, we used goldfish (Carassius auratus L.) white muscle in order to investigate subcellular distribution and kinetics of HK.

View Article and Find Full Text PDF