Publications by authors named "LuYu Zhou"

Parkinson's disease (PD) is a prevalent neurodegenerative disorder caused by degeneration of dopaminergic neurons, originating from the substantia nigra pars compacta, and characterized by motor symptoms such as bradykinesia, muscle rigidity, resting tremor, and postural instability, as well as non-motor symptoms such as anxiety, depression, reduced sense of smell, cognitive impairment, and visual dysfunction. Emerging evidence highlights the retina as a promising site for non-invasive exploration of PD pathology, due to its shared embryonic origin with the central nervous system. In recent years, with the development of ophthalmic technology, the acquisition of retinal-related function and structure has gradually become mature.

View Article and Find Full Text PDF

Background: Cardiac hypertrophy and its associated remodeling are among the leading causes of heart failure. Lysine crotonylation is a recently discovered posttranslational modification whose role in cardiac hypertrophy remains largely unknown. NAE1 (NEDD8 [neural precursor cell expressed developmentally downregulated protein 8]-activating enzyme E1 regulatory subunit) is mainly involved in the neddylation modification of protein targets.

View Article and Find Full Text PDF

tRNA-derived small RNAs (tsRNAs) constitute a subgroup of small noncoding RNAs (ncRNAs) originating from tRNA molecules. Their rich content, evolutionary conservatism, high stability, and widespread existence makes them significant in disease research. These characteristics have positioned tsRNAs as key players in various physiological and pathological processes.

View Article and Find Full Text PDF
Article Synopsis
  • PIWI-interacting RNAs (piRNAs) play a significant role in cardiovascular diseases, but their involvement in cardiomyocyte death from ischemia/reperfusion (I/R) injury, particularly necroptosis, is not well understood.
  • * A specific piRNA, called heart necroptosis-associated piRNA (HNEAP), has been identified as regulating necroptosis in cardiomyocytes by affecting DNA methylation of Atf7 mRNA through DNMT1.
  • * Elevated levels of HNEAP were found in damaged heart tissue, and inhibiting its action improved heart function, suggesting that targeting the HNEAP-DNMT1-ATF7-CHMP2A pathway could provide new treatments
View Article and Find Full Text PDF

Accurate differentiation between pulmonary arteries and veins (A/V) holds pivotal importance in the realm of diagnosing and treating pulmonary ailments. This study presents a new approach that leverages grayscale differences between A/V. Distinctions are measured using median and mean grayscale values within the vessel area.

View Article and Find Full Text PDF

Background: Emerging research has reported that circular RNAs (circRNAs) play important roles in cardiac cell death after myocardial ischemia and reperfusion (I/R). Ferroptosis, a new form of cell death discovered in recent years, has been proven to participate in the regulation of myocardial I/R. This study used circRNA sequencing to explore the key circRNA in the regulation of cardiac ferroptosis after I/R and study the mechanisms of potential circRNA function.

View Article and Find Full Text PDF

The regulation of gene expression in mammalian cells by combining various cis-regulatory features has rarely been discussed. In this study, we constructed expression vectors containing various combinations of regulatory elements to examine the regulation of gene expression by different combinations of cis-regulatory elements. The effects of four promoters (CMV promoter, PGK promoter, Polr2a promoter, and EF-1α core promoter), two enhancers (CMV enhancer and SV40 enhancer), two introns (EF-1α intron A and hybrid intron), two terminators (CYC1 terminator and TEF terminator), and their different combinations on downstream gene expression were compared in various mammalian cells using fluorescence microscopy to observe fluorescence, quantitative real-time PCR (qRT-PCR), and western blot.

View Article and Find Full Text PDF
Article Synopsis
  • The TMEM protein family is important for various body functions, but its specific effects on heart cell growth and repair are not well understood.
  • Research shows that TMEM11 actually prevents heart cell growth and inhibits heart repair processes.
  • By blocking TMEM11, heart cell proliferation and heart function improved after injury, suggesting that targeting the TMEM11-METTL1-ATF5-INCA1 pathway could be a new way to help heal damaged hearts.
View Article and Find Full Text PDF

Individuals in any country are badly impacted both economically and physically whenever an epidemic of infectious illnesses breaks out. A novel coronavirus strain was responsible for the outbreak of the coronavirus sickness in 2019. Corona Virus Disease 2019 (COVID-19) is the name that the World Health Organization (WHO) officially gave to the pneumonia that was caused by the novel coronavirus on February 11, 2020.

View Article and Find Full Text PDF

The role of Abraxas 2 (ABRO1 or KIAA0157), a component of the lysine63-linked deubiquitinating system, in the cardiomyocyte proliferation and myocardial regeneration is unknown. Here, we found that ABRO1 regulates cardiomyocyte proliferation and cardiac regeneration in the postnatal heart by targeting METTL3-mediated mA methylation of Psph mRNA. The deletion of ABRO1 increased cardiomyocyte proliferation in hearts and restored the heart function after myocardial injury.

View Article and Find Full Text PDF

The mechanism of cardiovascular diseases (CVDs) is complex and threatens human health. Cardiomyocyte death is an important participant in the pathophysiological basis of CVDs. Ferroptosis is a new type of iron-dependent programmed cell death caused by excessive accumulation of iron-dependent lipid peroxides and reactive oxygen species (ROS) and abnormal iron metabolism.

View Article and Find Full Text PDF

African swine fever virus (ASFV) is responsible for enormous economic losses in the global swine industry. The ASFV genome encodes approximate 160 proteins, most of whose functions remain largely unknown. In this study, we examined the roles of ASFV K205R in endoplasmic reticulum (ER) stress, autophagy, and inflammation.

View Article and Find Full Text PDF

PIWI-interacting RNAs (piRNAs) are abundantly expressed in heart. However, their functions and molecular mechanisms during myocardial infarction remain unknown. Here, a heart-apoptosis-associated piRNA (HAAPIR), which regulates cardiomyocyte apoptosis by targeting N-acetyltransferase 10 (NAT10)-mediated N4-acetylcytidine (ac C) acetylation of transcription factor EC (Tfec) mRNA transcript, is identified.

View Article and Find Full Text PDF

Alphaherpesvirus infection results in severe health consequences in a wide range of hosts. USPs are the largest subfamily of deubiquitinating enzymes that play critical roles in immunity and other cellular functions. To investigate the role of USPs in alphaherpesvirus replication, we assessed 13 USP inhibitors for PRV replication.

View Article and Find Full Text PDF

Circular RNAs (circRNAs) are differentially expressed in various cardiovascular disease including myocardial ischemia-reperfusion (I/R) injury. However, their functional impact on cardiomyocyte cell death, in particular, in necrotic forms of death remains elusive. In this study, we found that the level of mmu_circ_000338, a cardiac- necroptosis-associated circRNA (CNEACR), was reduced in hypoxia-reoxygenation (H/R) exposed cardiomyocytes and I/R-injured mice hearts.

View Article and Find Full Text PDF

Background: The distribution of pulmonary vessels in computed tomography (CT) and computed tomography angiography (CTA) images of lung is important for diagnosing disease, formulating surgical plans and pulmonary research.

Purpose: Based on the pulmonary vascular segmentation task of International Symposium on Image Computing and Digital Medicine 2020 challenge, this paper reviews 12 different pulmonary vascular segmentation algorithms of lung CT and CTA images and then objectively evaluates and compares their performances.

Methods: First, we present the annotated reference dataset of lung CT and CTA images.

View Article and Find Full Text PDF

Circular RNA (circRNA) has a closed-loop structure, and its 3' and 5' ends are directly covalently connected by reverse splicing, which is more stable than linear RNA. CircRNAs usually possess microRNA (miRNA) binding sites, which can bind miRNAs and inhibit miRNA function. Many studies have shown that circRNAs are involved in the processes of cell senescence, proliferation and apoptosis and a series of signalling pathways, playing an important role in the prevention and treatment of diseases.

View Article and Find Full Text PDF

PIWI-interacting RNAs (piRNAs) are recently discovered small non-coding RNAs consisting of 24-35 nucleotides, usually including a characteristic 5-terminal uridine and an adenosine at position 10. PIWI proteins can specifically bind to the unique structure of the 3' end of piRNAs. In the past, it was thought that piRNAs existed only in the reproductive system, but recently, it was reported that piRNAs are also expressed in several other human tissues with tissue specificity.

View Article and Find Full Text PDF

Reduction oxidation (REDOX) reaction is crucial in life activities, and its dynamic balance is regulated by ROS. Reactive oxygen species (ROS) is associated with a variety of metabolic diseases involving in multiple cellular signalling in pathologic and physiological signal transduction. ROS are the by-products of numerous enzymatic reactions in various cell compartments, including the cytoplasm, cell membrane, endoplasmic reticulum (ER), mitochondria, and peroxisome.

View Article and Find Full Text PDF
Article Synopsis
  • PIWI-interacting RNAs (piRNAs) play a significant role during cardiac hypertrophy, but their specific functions are not fully understood.
  • A newly identified piRNA, named CHAPIR, promotes harmful cardiac growth by interfering with the methylation of Parp10 mRNA, which leads to increased PARP10 expression.
  • Targeting the CHAPIR-METTL3-PARP10-NFATC4 signaling pathway could offer new therapeutic strategies for managing cardiac hypertrophy and related heart issues.
View Article and Find Full Text PDF

3D printing of chitosan hydrogels has attracted wide interest because of their excellent biocompatibility, antibacterial activities, biodegradability, zero toxicity and low cost. However, chitosan inks are often involved in toxic and organic solvents. Moreover, the recently reported 3D-printed chitosan scaffolds lack enough strength, thus limiting their use in tissue engineering.

View Article and Find Full Text PDF

Four-dimensional (4D) printing of swellable materials have been viewed as an ideal approach to build shape morphing architectures. However, there is less variety in high-performance swellable materials, limiting its development. To address this challenge, we proposed a new strategy for designing high-performance thermal-responsive swellable materials.

View Article and Find Full Text PDF

Mitochondrial dysfunction is involved in the pathogenesis of various cardiovascular disorders. Although mitochondrial dynamics, including changes in mitochondrial fission and fusion, have been implicated in the development of cardiac hypertrophy, the underlying molecular mechanisms remain mostly unknown. Here, we show that NFATc3, miR-153-3p, and mitofusion-1 (Mfn1) constitute a signaling axis that mediates mitochondrial fragmentation and cardiomyocyte hypertrophy.

View Article and Find Full Text PDF

Hydrogels are very popular in biomedical areas for their extraordinary biocompatibility. However, most bio-hydrogels are too brittle to perform micro/nanofabrication. An effective method is cast molding; yet during this process, many defects occur as the excessive demolding stress damages the brittle hydrogels.

View Article and Find Full Text PDF