Publications by authors named "LuLu Fu"

In intelligent transportation systems, accurate vehicle target recognition within road scenarios is crucial for achieving intelligent traffic management. Addressing the challenges posed by complex environments and severe vehicle occlusion in such scenarios, this paper proposes a novel vehicle-detection method, YOLO-BOS. First, to bolster the feature-extraction capabilities of the backbone network, we propose a novel Bi-level Routing Spatial Attention (BRSA) mechanism, which selectively filters features based on task requirements and adjusts the importance of spatial locations to more accurately enhance relevant features.

View Article and Find Full Text PDF

Polymer nanoparticles with low curvature, especially two-dimensional (2D) soft materials, are rich in functions and outstanding properties and have received extensive attention. Crystallization-driven self-assembly (CDSA) of linear semicrystalline block copolymers is currently a common method of constructing 2D platelets of uniform size. Although accompanied by high controllability, this CDSA method usually and inevitably requires a longer aging time and lower assembly concentration, limiting the large-scale preparation of nanoaggregates.

View Article and Find Full Text PDF

High dark current density (J) severely hinders further advancement of near-infrared organic photodetectors (NIR OPDs). Herein, we tackle this grand challenge by regulating molecular crystallinity and aggregation of fully non-fused ring electron acceptors (FNREAs). TBT-V-F, which features fluorinated terminals, notably demonstrates crystalline intensification and a higher prevalence predominance of J-aggregation compared to its chlorinated counterpart (TBT-V-Cl).

View Article and Find Full Text PDF

Aqueous Zn-ion batteries (AZIBs) are promising for the next-generation large-scale energy storage. However, the Zn anode remains facing challenges. Here, we report a cyclodextrin polymer (P-CD) to construct quasi-single ion conductor for coating and protecting Zn anodes.

View Article and Find Full Text PDF

Aqueous Zn-ion batteries (AZIBs) are considered as promising candidates for the next-generation large-scale energy storage, which, however, is facing the challenge of instable Zn anodes. The anion is pivotal in the stability of anodes, which are not being paid enough attention to. Herein, the modulation of anions is reported using the Hofmeister series in supramolecular chemistry to boost the stability of Zn anodes.

View Article and Find Full Text PDF

To identify the relationship between leadership and work readiness in a cohort of new head nurses in China. This cross-sectional study enrolled 225 newly appointed head nurses in public tertiary hospitals in China, which were selected using convenience sampling. Data were collected using online questionnaires that included a sociodemographic characteristics form, the Nursing Managers Leadership Scale (NMLS), and the New Nurse Leaders' Job Readiness Scale (NNLJRS).

View Article and Find Full Text PDF

Objectives: This study aimed to investigate the current status of innovative behaviours among nurses in traditional Chinese medicine (TCM) hospitals using latent profile analysis, identify potential subgroups and their population characteristics and explore factors associated with different categories.

Design: Cross-sectional study.

Setting: Six TCM hospitals in Anhui, China.

View Article and Find Full Text PDF

Nonlinear absorption coefficient and modulation depth stand as pivotal properties of nonlinear optical (NLO) materials, while the existing NLO materials exhibit limitations such as low nonlinear absorption coefficients and/or small modulation depths, thereby severely impeding their practical application. Here we unveil that introducing Jahn-Teller distortion in a Mott-Hubbard system, (MA)CuX (MA=methylammonium; X=Cl, Br) affords the simultaneous attainment of a giant nonlinear absorption coefficient and substantial modulation depth. The optimized compound, (MA)CuCl, demonstrates a nonlinear absorption coefficient of (1.

View Article and Find Full Text PDF

Increasing research has focused on how ovarian hormones influence individual prosocial motivation and cooperation. However, most results remain ambiguous and contradictory. Here, we collected progesterone (PROG) and oestradiol from 62 healthy women with regular menstrual cycles to explore whether variations in ovarian hormones could flexibly change their cooperative preference according to their opponents' strategies in multiple rounds of a prisoner's dilemma (PD) game.

View Article and Find Full Text PDF

The sediment-water interfaces of cold seeps play important roles in nutrient transportation between seafloor and deep-water column. Microorganisms are the key actors of biogeochemical processes in this interface. However, the knowledge of the microbiome in this interface are limited.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) are among the most widely used metal-based engineered nanomaterials in biomedicine and nanotechnology, and account for >50 % of global nanomaterial consumer products. The increasing use of AgNPs potentially causes marine ecosystem changes; however, the environmental impacts of man-made AgNPs are still poorly studied. This study reports for the first time that man-made AgNPs intruded into cold seeps, which are important marine ecosystems where hydrogen sulfide, methane, and other hydrocarbon-rich fluid seepage occur.

View Article and Find Full Text PDF

Background: The within-species diversity of symbiotic bacteria represents an important genetic resource for their environmental adaptation, especially for horizontally transmitted endosymbionts. Although strain-level intraspecies variation has recently been detected in many deep-sea endosymbionts, their ecological role in environmental adaptation, their genome evolution pattern under heterogeneous geochemical environments, and the underlying molecular forces remain unclear.

Results: Here, we conducted a fine-scale metagenomic analysis of the deep-sea mussel Gigantidas platifrons bacterial endosymbiont collected from distinct habitats: hydrothermal vent and methane seep.

View Article and Find Full Text PDF

Perovskite layer defects are a primary inhibiting factor for their optical nonlinearity, which restricts their use in nonlinear photonics devices. Nevertheless, due to the variety of defect types, the passivation and repair of these defects remain challenging. Herein, a novel bifunctional passivation strategy was proposed, and the porphyrin with a donor-π-acceptor structure was designed to bifunctionally repair perovskite defects by linking different types of functional groups via acetylenic π-conjugated linkage bridges on both sides, thus improving the nonlinear optical (NLO) absorption properties of porphyrin-perovskite hybrid materials.

View Article and Find Full Text PDF

The relationships between epibiotic bacteria on deep-sea hosts and host lifestyle factors are of particular interest in the field of deep-sea chemoautotrophic environmental adaptations. The squat lobsters and are both dominant species in cold-seep ecosystems, and they have different distributions and feeding behaviors. These species may have evolved to have distinct epibiotic microbiota.

View Article and Find Full Text PDF

Liquid-liquid phase transition (LLPT) is a transition from one liquid state to another with the same composition but distinct structural change, which provides an opportunity to explore the relationships between structural transformation and thermodynamic/kinetic anomalies. Herein the abnormal endothermic LLPT in PdNiCuP glass-forming liquid was verified and studied by flash differential scanning calorimetry (FDSC) and ab initio molecular dynamics (AIMD) simulations. The results show that the change of the atomic local structure of the atoms around the Cu-P bond leads to the change in the number of specific clusters <0 2 8 0> and <1 2 5 3>, which leads to the change in the liquid structure.

View Article and Find Full Text PDF

Polymerizing small-molecular acceptors (SMAs) is a promising route to construct high performance polymer acceptors of all-polymer solar cells (all-PSCs). After SMA polymerization, the microstructure of molecular packing is largely modified, which is essential in regulating the excited-state dynamics during the photon-to-current conversion. Nevertheless, the relationship between the molecular packing and excited-state dynamics in polymerized SMAs (PSMAs) remains poorly understood.

View Article and Find Full Text PDF

Chirality is ubiquitous in nature, ranging from a DNA helix to a biological macromolecule, snail's shell, and even a galaxy. However, the precise control of chirality at the nanoscale is a challenge due to the structure complexity of supramolecular assemblies, the small energy differences between different enantiomers, and the difficulty in obtaining polymorphic crystals. The planar chirality of water-soluble pillar[5]arenes (called Na with Na ions in the side chain) host triggered by the addition of chiral amino acid hydrochloride (-AA-OEt) guests and acid/base is rationalized by the relative stability of different chiral isomers, being estimated by molecular dynamics (MD) simulations and quantum chemical calculations.

View Article and Find Full Text PDF

Cereals are rich sources of dietary protein, whose nutritional assessments are often performed on raw grains or protein isolates. However, processing and gastrointestinal digestion may affect amino acid (AA) compositions, then change the protein quality. In this study, we determined the digestibility and AA compositions of various foods produced by whole grains (PG) or flour (PF) from three cereals (millet, highland barley and buckwheat) and analyzed the impact of processing methods on the digestible indispensable amino acid score (DIAAS) using the INFOGEST protocol.

View Article and Find Full Text PDF

Objective: This study aimed to evaluate the effectiveness of granulocyte colony-stimulating factor (G-CSF) for infertility and recurrent spontaneous abortion.

Methods: Existing research was searched in PubMed, Embase and Cochrane Library till Dec 2021. Randomized control trials (RCTs) that compared G-CSF administration with the control group in infertility women undergoing IVF were included.

View Article and Find Full Text PDF

Ovarian, endometrial, and cervical cancer are common gynecologic malignancies, and their incidence is increasing year after year, with a younger patient population at risk. An exosome is a tiny "teacup-like" blister that can be secreted by most cells, is highly concentrated and easily enriched in body fluids, and contains a large number of lncRNAs carrying some biological and genetic information that can be stable for a long time and is not affected by ribonuclease catalytic activity. As a cell communication tool, exosome lncRNA has the advantages of high efficiency and high targeting.

View Article and Find Full Text PDF

D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS) is a commonly used nonionic surfactant used as a pharmaceutical carrier in different drug delivery systems. TPGS can reverse P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) and also has anticancer activities. It suggests that when designing antitumor drug preparation, it's necessary to take into account the antitumor activity of TPGS.

View Article and Find Full Text PDF

Background: Heterotopic pregnancy (HP) is a rare condition in which both ectopic and intrauterine pregnancies occur. HP is uncommon after natural conception but has recently received more attention due to the widespread use of assisted reproductive techniques (ART) such as ovulation promotion therapy.

Case Summary: Here, we describe a case of HP that occurred after ART with concurrent tubal and intrauterine singleton pregnancies.

View Article and Find Full Text PDF

Controlling molecular motion is one of hot topics in the field of chemistry. Molecular rotors have wide applications in building nanomachines and functional materials, due to their controllable rotations. Hence, the development of novel rotor systems, controlled by external stimuli, is desirable.

View Article and Find Full Text PDF

Symbioses between invertebrates and chemosynthetic bacteria are of fundamental importance in deep-sea ecosystems, but the mechanisms that enable their symbiont associations are still largely undescribed, owing to the culturable difficulties of deep-sea lives. Bathymodiolinae mussels are remarkable in their ability to overcome decompression and can be maintained successfully for an extended period under atmospheric pressure, thus providing a model for investigating the molecular basis of symbiotic interactions. Herein, we conducted metatranscriptome sequencing and gene co-expression network analysis of Gigantidas platifrons under laboratory maintenance with gradual loss of symbionts.

View Article and Find Full Text PDF

Remarkably diverse bacteria have been observed as biofilm aggregates on the surface of deep-sea invertebrates that support the growth of hosts through chemosynthetic carbon fixation. Growing evidence also indicates that community-wide interactions, and especially cooperation among symbionts, contribute to overall community productivity. Here, metagenome-guided metatranscriptomic and metabolic analyses were conducted to investigate the taxonomic composition, functions, and potential interactions of symbionts dwelling on the seta of Shinkaia crosnieri lobsters in a methane cold seep.

View Article and Find Full Text PDF