Background: The establishment of apicobasal polarity in epithelial cells is of critical importance in morphogenesis of mammary gland and other secretive gland tissues. The demise of the polarity is a critical step in early stages of tumorigenesis such as in breast ductal carcinoma in situ. The underlying molecular mechanism thus warrants in-depth investigations.
View Article and Find Full Text PDFThe multifaceted chemo-immune resistance is the principal barrier to achieving cure in cancer patients. Identifying a target that is critically involved in chemo-immune-resistance represents an attractive strategy to improve cancer treatment. iRhom1 plays a role in cancer cell proliferation and its expression is negatively correlated with immune cell infiltration.
View Article and Find Full Text PDFMelanoma is a dangerous form of skin cancer, making it important to investigate new mechanisms and approaches to enhance the effectiveness of treatment. Here, we establish a positive correlation between the human rhomboid family-1 (RHBDF1) protein and melanoma malignancy. We demonstrate that the melanoma RHBDF1 decrease dramatically inhibits tumor growth and the development of lung metastases, which may be related to the impaired glycolysis.
View Article and Find Full Text PDFReinforced cellular responses to endoplasmic reticulum (ER) stress are caused by a variety of pathological conditions including cancers. Human rhomboid family-1 protein (RHBDF1), a multiple transmembrane protein located mainly on the ER, has been shown to promote cancer development, while the binding immunoglobulin protein (BiP) is a key regulator of cellular unfolded protein response (UPR) for the maintenance of ER protein homeostasis. In this study, we investigated the role of RHBDF1 in maintaining ER protein homeostasis in breast cancer cells.
View Article and Find Full Text PDFMonocyte chemotactic protein-1 (MCP-1) is known to be able to facilitate vascular endothelial growth factor (VEGF) gene expression, hence promoting vascular hyperpermeability and neovascularization. We show here that a microRNA molecule, miR-374b-5p can target the 3'-untranslated region of the VEGF mRNA, thus preventing VEGF production. Additionally, MCP-1 promotes the acetylation of transcription factor stat3 at Lys685, which facilitates the formation of an ac-stat3-DNA methyltransferase-histone methyltransferase complex (ac-stat3/DNMT1/EZH2) that binds to the promoter of the miR-374b-5p gene.
View Article and Find Full Text PDFThe human rhomboid-5 homolog-1 (RHBDF1) is a multi-transmembrane protein present mainly on the endoplasmic reticulum. RHBDF1 has been implicated in the activation of epidermal growth factor receptor (EGFR)-derived cell growth signals and other activities critical to cellular responses to stressful conditions, but details of this activation mechanism are unclear. Here, we report a RHBDF1 mRNA transcript alternative splicing variant X6 (RHBDF1 X6 or RHX6) that antagonizes RHBDF1 activities.
View Article and Find Full Text PDFMacrophages of the M2 phenotype in malignant tumors significantly aid tumor progression and metastasis, as opposed to the M1 phenotype that exhibits anti-cancer characteristics. Raising the ratio of M1/M2 is thus a promising strategy to ameliorate the tumor immunomicroenvironment toward cancer inhibition. We report here that tumor necrosis factor superfamily-15 (TNFSF15), a cytokine with anti-angiogenic activities, is able to facilitate the differentiation and polarization of macrophages toward M1 phenotype.
View Article and Find Full Text PDFBackground: The rhomboids are a family of multi-transmembrane proteins, many of which have been implicated in facilitating tumor progression. Little is yet known, however, about rhomboid-associated biomarkers in cancers. An analysis of such biomarkers could yield important insights into the role of the rhomboids in cancer pathology.
View Article and Find Full Text PDFDestabilization of blood vessels by the activities of vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) following intracerebral hemorrhage (ICH) has been considered the main causes of aggravated secondary brain injury. Here, we show that tumor necrosis factor superfamily-15 (TNFSF15; also known as vascular endothelial growth inhibitor), an inhibitor of VEGF-induced vascular hyper-permeability, when overexpressed in transgenic mice, exhibits a neuroprotective function post-ICH. In this study, we set-up a collagenase-induced ICH model with TNFSF15-transgenic mice and their transgene-negative littermates.
View Article and Find Full Text PDFNanoparticles, that can be enriched in the tumor microenvironment and deliver the payloads into cancer cells, are desirable carriers for theranostic agents in cancer diagnosis and treatment. However, efficient targeted delivery and enhanced endocytosis for probes and drugs in theranostics are still major challenges. Here, a nanoparticle, which is capable of charge reversal from negative to positive in response to matrix metalloproteinase 9 (MMP9) in tumor microenvironment is reported.
View Article and Find Full Text PDFCaspase-3/8 are key members of the cysteine-aspartyl protease family with pivotal roles in apoptosis. We have designed and synthesized self-assembling probes, Nap-GFFpYDEVD-AFC and Nap-GFFpYIETD-AFC, with fluorescence 'turn-on' properties for real-time monitoring of Caspase-3/8 activity in living cells.
View Article and Find Full Text PDFSpecific and expeditious identification and enrichment of target proteins in living cells is often a challenging task. The hexahistidine (6His) tag is frequently used to label artificially engineered proteins produced in prokaryotic or eukaryotic cells. Utilizing the interaction between 6His-tag and nitrilotriacetic acid (NTA) mediated by divalent metal ions (Ni, Cu, Zn or Co), we designed and synthesized a series of Nap-G/Biotin/ANA-FFpYGK-NTA probes that, assisted by alkaline phosphatase (ALP), self-assemble into nanofibers.
View Article and Find Full Text PDFChem Commun (Camb)
December 2020
We developed a new strategy to overcome the MDR of etoposide using self-assembling nanofibers. Compared with the original etoposide, the inhibitory activity of Nap-GFFpYK-etoposide1/2 against murine Lewis lung cancer or breast cancer cells was increased 10 times, and 20 times on these cells with artificially overexpressed MDR1. Our method to synthesize and separate etoposide isomers provides a new strategy for the modification of this drug.
View Article and Find Full Text PDFHemangioblastoma (HB) is an abnormal intracranial buildup of blood vessels that exhibit a great potential for hemorrhage. Surgical options are limited, and few medications are available for treatment. We show here by immunohistochemical analysis that HB lesions display highly increased levels of VEGF expression and macrophage/microglia infiltration compared with those in normal brain tissues.
View Article and Find Full Text PDFHydrogen sulfide (HS) and human NAD(P)H:quinine oxidoreductase 1 (hNQO1) are potential cancer biomarkers and also vital participants in cellular redox homeostasis. Simultaneous detection of these two biomarkers would benefit the diagnostic precision of related cancers and could also help to investigate their crosstalk in response to oxidative stress. Despite this importance, fluorescent probes that can be activated by the dual action of HS detection and hNQO1 activity have not been investigated.
View Article and Find Full Text PDFBackground: Epidermal growth factor receptor (EGFR) signalling is critical in epithelial cancer development. Human rhomboid family-1 (RHBDF1) facilitates the secretion of TGFα, an EGFR ligand, in breast cancer; however, the underlying mechanism remains unclear. We evaluated the role for RHBDF1 in clathrin-coated vesicle (CCV)-dependent pro-TGFα membrane trafficking in breast cancer cells upon stimulation by G-protein coupled receptor (GPCR) agonists.
View Article and Find Full Text PDFSignal Transduct Target Ther
February 2021
Vascular hyperpermeability occurs in angiogenesis and several pathobiological conditions, producing elevated interstitial fluid pressure and lymphangiogenesis. How these closely related events are modulated is a fundamentally important question regarding the maintenance of vascular homeostasis and treatment of disease conditions such as cancer, stroke, and myocardial infarction. Signals mediated by vascular endothelial growth factor receptors, noticeably VEGFR-1, -2, and -3, are centrally involved in the promotion of both blood vessel and lymphatic vessel growth.
View Article and Find Full Text PDFTo achieve multisite-targeting-based DNA cleavage simultaneously, we designed two kinds of CRISPR RNA arrays by fusing four single guide RNAs (sgRNAs for Cas9 or crRNAs for Cpf1) with uncleavable RNA linkers (CRISPRay). The CRISPRay could operate on four adjacent target sites to cleave target DNA in a collaborative manner. Two CRISPR RNA arrays demonstrated robust inactivation of the firefly luciferase gene in living cells.
View Article and Find Full Text PDFThe human rhomboid family (RHBDF)1 gene is highly expressed in breast cancer under clinical conditions but not in normal mammary gland tissues. Silencing the RHBDF1 gene in breast cancer xenograft tumors leads to inhibition of tumor growth. We show in this study that artificially raising RHBDF1 protein levels in the mammary epithelial cells MCF-10A results in severe perturbations of the ability of the cells to form lumen-containing acini, either in 3-dimensional cell cultures or implanted in mouse mammary fat pads.
View Article and Find Full Text PDFA new bench-stable reagent with double diazonium sites was designed and synthesized for protein crosslinking. Based on the highly efficient diazonium-Tyr coupling reaction, a direct mixture of the reagent and tobacco mosaic virus led to the formation of a new hydrogel, which could be degraded by chemicals and could be used to encapsulate small molecules for sustained release. Because plant viruses exhibit many chemical characteristics like protein labelling and nucleic acid packaging, the virus-based hydrogel will have large chemical space for further functionalization.
View Article and Find Full Text PDFNear-infrared (NIR) fluorescence-based sensors capable of selective detection of HS would be useful tools to understand the mechanisms of diseases. A new NIR fluorescence probe was developed for the detection of endogenous HS in colorectal cancer cells in mice. displayed an 87-fold fluorescence enhancement at 796 nm (with excitation at 730 nm) when reacted with HS in a buffer (pH 7.
View Article and Find Full Text PDFVascular hyperpermeability is critical in ischemic diseases, including stroke and myocardial infarction, as well as in inflammation and cancer. It is well known that the VEGF-VEGFR2 signaling pathways are pivotal in promoting vascular permeability; however, counterbalancing mechanisms that restrict vascular permeability to maintain the integrity of blood vessels are not yet fully understood. We report that TNF superfamily member 15 (TNFSF15), a cytokine largely produced by vascular endothelial cells and a specific inhibitor of the proliferation of these same cells, can inhibit VEGF-induced vascular permeability and , and that death receptor 3 (DR3), a cell surface receptor of TNFSF15, mediates TNFSF15-induced dephosphorylation of VEGFR2.
View Article and Find Full Text PDFTumor necrosis factor superfamily-15 (TNFSF15; VEGI; TL1A) is a negative modulator of angiogenesis for blood vessel homeostasis and is produced by endothelial cells in a mature vasculature. It is known to be downregulated by vascular endothelial growth factor (VEGF), a major regulator of neovascularization but the mechanism of this interaction is unclear. Here we report that VEGF is able to stimulate the production of two microRNAs, miR-20a and miR-31, which directly target the 3'-UTR of TNFSF15.
View Article and Find Full Text PDFVascular endothelial cell growth factor (VEGF) plays a pivotal role in promoting neovascularization. VEGF gene expression in vascular endothelial cells in normal tissues is maintained at low levels but becomes highly up-regulated in a variety of disease settings including cancers. Tumor necrosis factor superfamily 15 (TNFSF15; VEGI; TL1A) is an anti-angiogenic cytokine prominently produced by endothelial cells in a normal vasculature.
View Article and Find Full Text PDF