Hydrogen peroxide promoted leaf senescence by sulfenylating the magnesium chelating protease I subunit (CHLI1) in the chlorophyll synthesis pathway, and inhibited its activity to reduce chlorophyll synthesis. Leaf senescence is the final and crucial stage of plant growth and development, during which chlorophyll experiences varying degrees of destruction. It is well-known that the higher ROS accumulation is a key factor for leaf senescence, but whether and how ROS regulates chlorophyll synthesis in the process are unknown.
View Article and Find Full Text PDFClimate change is resulting in more frequent and rapidly changing temperatures at both extremes that severely affect the growth and production of plants, particularly crops. Oxidative stress caused by high temperatures is one of the most damaging factors for plants. However, the role of hydrogen peroxide (HO) in modulating plant thermotolerance is largely unknown, and the regulation of photorespiration essential for C3 species remains to be fully clarified.
View Article and Find Full Text PDFXanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight (BB), a globally devastating disease of rice (Oryza sativa) that is responsible for significant crop loss. Sugars and sugar metabolites are important for pathogen infection, providing energy and regulating events associated with defense responses; however, the mechanisms by which they regulate such events in BB are unclear.
View Article and Find Full Text PDFBackground: The prognostic role of either forkhead box A1 (FOXA1) or anterior gradient 2 (AGR2) in breast cancer has been found separately. Considering that there were interplays between them depending on ER status, we aimed to assess the statistical interaction between AGR2 and FOXA1 on breast cancer prognosis and examine the prognostic role of the combination of them by ER status.
Methods: AGR2 and FOXA1 expression in tumor tissues were evaluated with tissue microarrays by immunohistochemistry in 915 breast cancer patients with follow up data.
Background: Results of previous studies about the prognostic roles of histone H4 lysine 16 acetylation (H4K16ac) and histone H4 lysine 20 trimethylation (H4K20me3) in breast cancer were inconsistent. Cellular experiments revealed the interplays between H4K16ac and H4K20me3, but no population study explored the interaction between them on the prognosis.
Methods: H4K16ac and H4K20me3 levels in tumors were evaluated by immunohistochemistry for 958 breast cancer patients.
Seed germination is a complex process that is regulated by various exogenous and endogenous factors, in which abscisic acid (ABA) plays a crucial role. The triphosphate tunnel metalloenzyme (TTM) superfamily exists in all living organisms, but research on its biological role is limited. Here, we reveal that functions in ABA-mediated seed germination.
View Article and Find Full Text PDFBackground: Reproductive tract infections influenced a series of inflammatory processes which involved in the development of breast cancer, while the processes were largely affected by estrogen. The present study aimed to explore the associations of breast cancer risk and prognosis with reproductive tract infections and the modification effects of estrogen exposure.
Methods: We collected history of reproductive tract infections, menstruation and reproduction from 1003 cases and 1107 controls and a cohort of 4264 breast cancer patients during 2008-2018 in Guangzhou, China.
Background: Animal experiments have shown the anticancer activity of (), but its effect on the prognosis of cancer patients is unclear. Thus, the present study aimed to investigate the prognostic role of anti- IgG in breast cancer patients and the modification effect of cytokines.
Methods: A total of 1121 breast cancer patients were recruited between 2008 and 2018 and followed up until December 31, 2021.
About 30% of patients with hormone receptor (HR)-positive breast cancers and up to 50% of human epidermal growth factor receptor 2 (HER2)-positive patients develop progression due to treatment resistance, highlighting the need for more differentiated tumor classifications within the breast cancer molecular subtype to optimize the therapies. We aim to examine the roles of histone modification markers. The levels of common repressive histone markers, histone H3 lysine 9 trimethylation (H3K9me3), histone H3 lysine 27 trimethylation (H3K27me3), and histone H4 lysine 20 trimethylation (H4K20me3), in tumors were evaluated by immunohistochemistry for 914 breast cancer patients.
View Article and Find Full Text PDFSALT OVERLY SENSITIVE1 (SOS1) is a key component of plant salt tolerance. However, how SOS1 transcription is dynamically regulated in plant response to different salinity conditions remains elusive. Here, we report that C-type Cyclin1;1 (CycC1;1) negatively regulates salt tolerance by interfering with WRKY75-mediated transcriptional activation of SOS1 in Arabidopsis (Arabidopsis thaliana).
View Article and Find Full Text PDFHydrogen sulfide (H S) promotes plant tolerance against various environmental cues, and d-cysteine desulfhydrase (DCD) is an enzymatic source of H S to enhance abiotic stress resistance. However, the role of DCD-mediated H S production in root growth under abiotic stress remains to be further elucidated. Here, we report that DCD-mediated H S production alleviates osmotic stress-mediated root growth inhibition by promoting auxin homeostasis.
View Article and Find Full Text PDFPurpose: Enolase-1 (ENO1) plays a key role in malignancies. Previous studies on the association between ENO1 expression and breast cancer prognosis had yielded inconsistent results. In the present study, we assessed the prognostic effect of ENO1 in breast cancer using Guangzhou Breast Cancer Study (GZBCS) cohort with full consideration of the potential confounders and the modification effects.
View Article and Find Full Text PDFHigh salinity, an adverse environmental factor affecting about 20% of irrigated arable land worldwide, inhibits plant growth and development by causing oxidative stress, damaging cellular components, and disturbing global metabolism. However, whether and how reactive oxygen species disturb the metabolism of salt-stressed plants remain elusive. Here, we report that salt-induced hydrogen peroxide (H2O2) inhibits the activity of plastid triose phosphate isomerase (pdTPI) to promote methylglyoxal (MG) accumulation and stimulates the sulfenylation of pdTPI at cysteine 74.
View Article and Find Full Text PDFJasmonic acid (JA) signaling plays a pivotal role in plant development and defense. MYC2 is a master transcription factor in JA signaling, and was found to be phosphorylated and negatively regulated by MAP kinase and receptor-like kinase. However, the kinases that positively regulate MYC2 through phosphorylation and promote MYC2-mediated activation of JA response have not been identified.
View Article and Find Full Text PDFBackground: Cellular experiments revealed that a decreased histone H3 lysine 9 trimethylation (H3K9me3) level was associated with the upregulation of oncogenes in breast cancer cells. Moreover, the role of H3K9me3 in breast cancer was closely associated with estrogen receptor (ER) status. Therefore, we aimed to examine the prognostic value of H3K9me3 on breast cancer by ER status.
View Article and Find Full Text PDFCancer Epidemiol Biomarkers Prev
November 2022
Background: Previous studies have found that acute febrile infection may decrease the risk of breast cancer. Meanwhile, it is well known that interleukin-6 (IL6) played dual roles in the tumor microenvironment. Fever may stimulate IL6 production, and IL6 rs1800796 also influences the expression of IL6.
View Article and Find Full Text PDFThe ELO family is involved in synthesizing very-long-chain fatty acids (VLCFAs) and VLCFAs play a crucial role in plant development, protein transport, and disease resistance, but the physiological function of the plant ELO family is largely unknown. Further, while nitric oxide synthase (NOS)-like activity acts in various plant environmental responses by modulating nitric oxide (NO) accumulation, how the NOS-like activity is regulated in such different stress responses remains misty. Here, we report that the yeast mutant Δ is defective in HO-triggered cell apoptosis with decreased NOS-like activity and NO accumulation, while its Arabidopsis homologous gene could complement such defects in Δ.
View Article and Find Full Text PDFHO affects the expression of genes that are involved in plant responses to diverse environmental stresses; however, the underlying mechanisms remain elusive. Here, we demonstrate that HO enhances plant freezing tolerance through its effect on a protein product of low expression of osmotically responsive genes2 (LOS2). LOS2 is translated into a major product, cytosolic enolase2 (ENO2), and sometimes an alternative product, the transcription repressor c-Myc-binding protein (MBP-1).
View Article and Find Full Text PDFTo adapt to changing environments, plants have evolved elaborate regulatory mechanisms balancing their growth with stress responses. It is currently unclear whether and how the tryptophan (Trp), the growth-related hormone auxin, and the stress hormone abscisic acid (ABA) are coordinated in this trade-off. Here, we show that tryptophan synthase β subunit 1 (TSB1) is involved in the coordination of Trp and ABA, thereby affecting plant growth and abiotic stress responses.
View Article and Find Full Text PDFPurpose: Results of the associations between weight change after breast cancer diagnosis and prognosis were inconsistent. The modification effects of menopausal status and endocrine therapy on the associations remain poorly understood.
Methods: A total of 2016 breast cancer patients were recruited between October 2008 and January 2018 and followed up until December 31, 2019 in Guangzhou.
Erythropoietic protoporphyria (EPP) is a rare inherited disease whose morbidity is about 1:75,000 to 1:200,000. It is caused by the deficiency of porphyrin ferrochelatase (FECH). Liver involvement in EPP is even rarer.
View Article and Find Full Text PDFThe antagonistic effect of selenium (Se) against cadmium (Cd)-induced breast carcinogenesis was reported, but underlying mechanisms were unclear. The aim of this study was to identify the epigenetically regulated genes and biological pathways mediating the antagonistic effect. We exposed MCF-7 cells to Cd and Se alone or simultaneously.
View Article and Find Full Text PDFAdventitious rooting is a heritable quantitative trait that is influenced by multiple endogenous and exogenous factors in plants, and one important environmental factor required for efficient adventitious root formation is light signaling. However, the physiological significance and molecular mechanism of light underlying adventitious root formation are still largely unexplored. Here, we report that blue light-induced adventitious root formation is regulated by PIN-FORMED3 (PIN3)-mediated auxin transport in Arabidopsis.
View Article and Find Full Text PDFGlutaminase 1 (GLS) is a therapeutic target for breast cancer; although GLS inhibitors have been developed, only a few subjects responded well to the therapy. Considering that the expression of histone H3 lysine 27 trimethylation (H3K27me3) and menopausal status was closely linked to GLS, we examined the effects of H3K27me3 and menopausal status on GLS to breast cancer prognosis. Data for 962 women diagnosed with primary invasive breast cancer were analyzed.
View Article and Find Full Text PDF