Chlorinated polyfluorinated ether sulfonate (F-53B), a chromium-fog depressant widely utilized as an alternative to perfluorooctanesulfonate, can transfer from mother to fetus. Recent research has demonstrated that prenatal exposure to F-53B results in synaptic damage in weaning mice. However, the mechanism underpinning F-53B-triggered synaptic damage during fetal development remains unclear.
View Article and Find Full Text PDFEvidence from animal experiments has shown that chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs) can induce vision dysfunction in zebrafish. However, environmental epidemiological evidence supporting this hypothesis remains limited. In our case-control study, samples collected from 270 individuals (135 controls and 135 cases) from the Isomers of C8 Health Project data were analyzed for Cl-PFESAs.
View Article and Find Full Text PDFEpidemiological evidence showed that serum high perfluorooctane sulfonate (PFOS) levels are associated with multiple eye related diseases, but the potential underlying molecular mechanisms remain poorly understood. Zebrafish and photoreceptor cell (661w) models were used to investigate the molecular mechanism of PFOS induced eye development defects. Our results showed a novel molecular mechanism of PFOS-induced inflammation response-mediated photoreceptor cell death associated with eye development defects.
View Article and Find Full Text PDFChlorinated polyfluorinated ether sulfonate, commercially known as F-53B, has been associated with adverse birth outcomes. However, the reproductive toxicology of F-53B on the placenta remains poorly understood. To address this gap, we examined the impact of F-53B on placental injury and its underlying molecular mechanisms in vivo.
View Article and Find Full Text PDFChlorinated polyfluorinated ether sulfonates (Cl-PFESAs) are one kind of replacement chemistry for perfluorooctanesulfonate (PFOS). Recent studies have shown that Cl-PFESAs could interfere with thyroid function in animal models. However, epidemiological evidence on the link between Cl-PFESAs and thyroid function remains scarce.
View Article and Find Full Text PDFExperimental evidence has shown that per- and polyfluoroalkyl substances (PFAS) alternatives and mixtures may exert hepatotoxic effects in animals. However, epidemiological evidence is limited. This research aimed to explore associations of PFAS and the alternatives with liver function in a general adult population.
View Article and Find Full Text PDFNumerous epidemiological studies have investigated the lipid interference effects of legacy PFASs, however, no studies on PFAS alternatives and blood lipids have been published. In this study, we explored the association between Cl-PFESAs, a typical PFASs alternative in China, and blood lipid profiles in 1336 Guangzhou community residents using linear and non-linear regression models. The results showed a deleterious effect of Cl-PFESAs and blood lipids: adjusted estimates (β) for TC, TG, LDL-C and HDL-C per natural log unit increase of 6:2 Cl-PFESA were 0.
View Article and Find Full Text PDF