Publications by authors named "Lu-Qiao Wang"

Background: Myocardial ischemia-reperfusion injury (MIRI) caused by the reperfusion therapy of myocardial ischemic diseases is a kind of major disease that threatens human health and lives severely. There are lacking of effective therapeutic measures for MIRI. MicroRNAs (miRNAs) are abundant in mammalian species and play a critical role in the initiation, promotion, and progression of MIRI.

View Article and Find Full Text PDF

Objective: To investigate the effect and involved mechanism of RSL3 on ferroptosis action in acute leukemia cells MOLM13 and its drug-resistant cells.

Methods: After MOLM13 treated with RSL3, CCK-8 assay was performed to detect cell viability, flow cytometry was used to detect the reactive oxygen species (ROS) level of the cells, RT-qPCR and Western blot were used to detect the expression of glutathione peroxidase 4 (GPX4). After MOLM13/IDA and MOLM13/Ara-C, the drug-resistant cell lines were constructed, the ferroptosis induced by RSL3 was observed.

View Article and Find Full Text PDF

Background: Circulating microRNAs (miRNAs) have emerged as potential biomarkers for cardiovascular diseases. However, few studies have focused on the role of exosomal miRNAs in acute coronary syndrome (ACS). The purpose of this study was to explore weather serum exosomal microRNA-146a (exo-miR-146a) could be used as a novel diagnostic biomarker for ACS and to investigate its relationship with inflammatory response.

View Article and Find Full Text PDF

The morbidity and mortality of myocardial ischemia-reperfusion injury (MIRI) have increased in modern society. Noncoding RNAs (ncRNAs), including lncRNAs, circRNAs, piRNAs and miRNAs, have been reported in a variety of studies to be involved in pathological initiation and developments of MIRI. Hence this review focuses on the current research regarding these ncRNAs in MIRI.

View Article and Find Full Text PDF

The purpose of this study was to investigate the potential cardioprotection roles of Rapamycin in anoxia/reoxygenation (A/R) injury of cardiomyocytes through inducing autophagy, and the involvement of PI3k/Akt pathway. We employed simulated A/R of neonatal rat ventricular myocytes (NRVM) as an in vitro model of ischemial/reperfusion (I/R) injury to the heart. NRVM were pretreated with four different concentrations of Rapamycin (20, 50, 100, 150 μmol/L), and pretreated with 10 mmol/L 3-methyladenine (3MA) for inhibiting autophagy during A/R.

View Article and Find Full Text PDF