Publications by authors named "Lu Zhengmao"

Moisture-capturing materials can enable potentially game-changing energy-water technologies such as atmospheric water production, heat storage, and passive cooling. Hydrogel composites recently emerged as outstanding moisture-capturing materials due to their low cost, high affinity for humidity, and design versatility. Despite extensive efforts to experimentally explore the large design space of hydrogels for high-performance moisture capture, there is a critical knowledge gap on our understanding behind the moisture-capture properties of these materials.

View Article and Find Full Text PDF

Despite advancements in therapeutic agents for diabetic chronic wounds, challenges such as suboptimal bioavailability, intricate disease milieus, and inadequate delivery efficacy have impeded treatment outcomes. Here, ultrasound-responsive hydrogel incorporated with heparin-binding domain (HBD) peptide nanoparticles is developed to promote diabetic wound healing. HBD peptide, derived from von Willebrand Factor with angiogenic activity, are first engineered to self-assemble into nanoparticles with enhanced biostability and bioavailability.

View Article and Find Full Text PDF

Surgical resection, the mainstay for melanoma treatment, faces challenges due to high tumor recurrence rates and complex postoperative wound healing. Chronic inflammation from residual disease and the risk of secondary infections impede healing. We introduce an innovative, injectable hydrogel system that integrates a multifaceted therapeutic approach.

View Article and Find Full Text PDF

Bubbles play a ubiquitous role in electrochemical gas evolution reactions. However, a mechanistic understanding of how bubbles affect the energy efficiency of electrochemical processes remains limited to date, impeding effective approaches to further boost the performance of gas evolution systems. From a perspective of the analogy between heat and mass transfer, bubbles in electrochemical gas evolution reactions exhibit highly similar dynamic behaviors to them in the liquid-vapor phase change.

View Article and Find Full Text PDF

Preventing the recurrence of melanoma after surgery and accelerating wound healing are among the most challenging aspects of melanoma management. Photothermal therapy has been widely used to treat tumors and bacterial infections and promote wound healing. Owing to its efficacy and specificity, it may be used for postoperative management of tumors.

View Article and Find Full Text PDF

Tumors are among the leading causes of death worldwide. Cell-derived biomimetic functional materials have shown great promise in the treatment of tumors. These materials are derived from cell membranes, extracellular vesicles and bacterial outer membrane vesicles and may evade immune recognition, improve drug targeting and activate antitumor immunity.

View Article and Find Full Text PDF

Purpose: Currently, the characteristics and prognosis of remnant gastric cancer (RGC) are not fully understood yet. The present study aimed to describe the details of clinicopathological features of resectable RGC and investigated the factors affecting survival after the curative operation.

Methods: From Jan.

View Article and Find Full Text PDF

Stem cell injection is an effective approach for treating diabetic wounds; however, shear stress during injections can negatively affect their stemness and cell growth. Cell-laden porous microspheres can provide shelter for bone mesenchymal stem cells (BMSC). Herein, curcumin-loaded flower-like porous microspheres (CFPM) are designed by combining phase inversion emulsification with thermally induced phase separation-guided four-arm poly (l-lactic acid) (B-PLLA).

View Article and Find Full Text PDF

Purpose: This study aimed to investigate the changes in endothelial-related biomarkers and their relationship with the incidence and prognosis of patients with sepsis after severe trauma.

Methods: A total of 37 severe trauma patients admitted to our hospital from Jan. to Dec.

View Article and Find Full Text PDF

Graphene oxide (GO) is a promising membrane material for chemical separations, including water treatment. However, GO has often required postsynthesis chemical modifications, such as linkers or intercalants, to improve either the permeability, performance, or mechanical integrity of GO membranes. In this work, we explore two different feedstocks of GO to investigate chemical and physical differences, where we observe up to a 100× discrepancy in the permeability-mass loading trade-off while maintaining nanofiltration capacity.

View Article and Find Full Text PDF

Background: Sepsis is a life-threatening disease with a limited effectiveness and the potential mechanism remains unclear. LncRNA NEAT-2 is reported to be involved in the regulation of cardiovascular disease. This study aimed to investigate the function of NEAT-2 in sepsis.

View Article and Find Full Text PDF

Osteoarthritis is a degenerative disorder that can severely affect joints, and new treatment strategies are urgently needed. Administration of mesenchymal stem cell (MSC)-derived exosomes is a promising therapeutic strategy in osteoarthritis treatment. However, the poor yield of exosomes is an obstacle to the use of this modality in the clinic.

View Article and Find Full Text PDF

Wound healing is a complex and dynamic process, and metabolic disturbances in the microenvironment of chronic wounds and the severe symptoms they cause remain major challenges to be addressed. The inherent properties of hydrogels make them promising wound dressings. In addition, biomembrane-based nanostructures and microstructures (such as liposomes, exosomes, membrane-coated nanostructures, bacteria and algae) have significant advantages in the promotion of wound healing, including special biological activities, flexible drug loading and targeting.

View Article and Find Full Text PDF

Gastrointestinal tumors are the most common cancers with the highest morbidity and mortality worldwide. Surgery accompanied by chemotherapy, radiotherapy and targeted therapy remains the first option for gastrointestinal tumors. However, poor specificity for tumor cells of these postoperative treatments often leads to severe side effects and poor prognosis.

View Article and Find Full Text PDF

Objective: Appendiceal mucinous neoplasm (AMN) is a rare obstructive dilatation of the appendix caused by an intraluminal accumulation of mucoid material, showing an insidious onset and few specific clinical manifestations. The purpose of the study is to analyze clinicopathological characteristics of primary AMN and recurrence after radical resection.

Methods: A total of 50 patients were included in the retrospective cohort study of AMN.

View Article and Find Full Text PDF

Bubble evolution plays a fundamental role in boiling and gas-evolving electrochemical systems. One key stage is bubble departure, which is traditionally considered to be buoyancy-driven. However, conventional understanding cannot provide the full physical picture, especially for departure events with small bubble sizes commonly observed in water splitting and high heat flux boiling experiments.

View Article and Find Full Text PDF

We present a surface-engineering approach that turns all liquids highly wetting, including ultra-high surface tension fluids such as mercury. Previously, highly wetting behavior was only possible for intrinsically wetting liquid/material combinations through surface roughening to enable the so-called Wenzel and hemiwicking states, in which liquid fills the surface structures and causes a droplet to exhibit a low contact angle when contacting the surface. Here, we show that roughness made of reentrant structures allows for a metastable hemiwicking state even for nonwetting liquids.

View Article and Find Full Text PDF

Hygroscopic hydrogels hold significant promise for high-performance atmospheric water harvesting, passive cooling, and thermal management. However, a mechanistic understanding of the sorption kinetics of hygroscopic hydrogels remains elusive, impeding an optimized design and broad adoption. Here, we develop a generalized two-concentration model (TCM) to describe the sorption kinetics of hygroscopic hydrogels, where vapor transport in hydrogel micropores and liquid transport in polymer nanopores are coupled through the sorption at the interface.

View Article and Find Full Text PDF

Background: Tocilizumab (TCZ), an interleukin-6 receptor antibody, has previously been used for treating patients with the coronavirus disease 2019 (COVID-19), but there is a lack of data regarding the administration timing of TCZ.

Objectives: This study aimed to evaluate the timing and efficacy of TCZ in the treatment of patients with COVID-19.

Methods: Laboratory-confirmed patients with COVID-19 with an elevated interleukin-6 (IL-6) level (>10 pg/ml) were offered TCZ intravenously for compassionate use.

View Article and Find Full Text PDF

Bubble nucleation is ubiquitous in gas evolving reactions that are instrumental for a variety of electrochemical systems. Fundamental understanding of the nucleation process, which is critical to system optimization, remains limited as prior works generally focused on the thermodynamics and have not considered the coupling between surface geometries and different forms of transport in the electrolytes. Here, we establish a comprehensive transport-based model framework to identify the underlying mechanism for bubble nucleation on gas evolving electrodes.

View Article and Find Full Text PDF

Background: Analysis of the risk factors associated with functional delayed gastric emptying after distal gastric cancer surgery to provide a basis for further reduction of the incidence of this complication.

Methods: Total of 1382 patients with distal gastric cancer from January 2016 to October 2018 were enrolled. Correlation analysis was performed in 53 patients with FDGE by logistic regression.

View Article and Find Full Text PDF

Several studies focus on the relationship between immune cells in the tumor microenvironment and tumor cells. Th17 cells, a naïve CD4 T cell subtype, secrete IL-17 cytokines that further the progression and metastasis of tumors, such as gastric cancer, which is a leading cause of cancer-related death worldwide. Moreover, previous studies have demonstrated that the polarization ratio of CD4 T cells to Th17 cells is closely related to the Tetraspanin 1 (TSPAN1) protein.

View Article and Find Full Text PDF

Water is often considered as the highest performance working fluid for liquid-vapor phase change due to its high thermal conductivity and large enthalpy of vaporization. However, a wide range of industrial systems require using low surface tension liquids where heat transfer enhancement has proved challenging for boiling and evaporation. Here, we enable a new paradigm of phase change heat transfer, which favors high volatility, low surface tension liquids rather than water.

View Article and Find Full Text PDF

Background: The status of lymph nodes in early gastric cancer is critical to make further clinical treatment decision, but the prediction of lymph node metastasis remains difficult before operation. This study aimed to develop a nomogram that contained preoperative factors to predict lymph node metastasis in early gastric cancer patients.

Methods: This study analyzed the clinicopathologic features of 823 early gastric cancer patients who underwent gastrectomy retrospectively, among which 596 patients were recruited in the training cohort and 227 patients in the independent validation cohort.

View Article and Find Full Text PDF

The roles of cancer-associated fibroblasts (CAFs) in progression of gastric cancer (GC) are far from well illustration. Here, we show that CAFs can trigger the proliferation and decrease the doxorubicin (Dox) sensitivity of GC cells via secretion of Nodal, one embryonic morphogen that can promote malignancy of various cancers. The neutralization antibody of Nodal can attenuate CAFs-induced cell proliferation.

View Article and Find Full Text PDF