Soil salinization has emerged as a major factor negatively affecting soil quality and plant productivity. Proline, functioning as an osmotic regulator, has been proposed as an effective strategy for enhancing plant tolerance to salt stress. This study aimed to investigate the effects of exogenous proline on salt tolerance in soybeans.
View Article and Find Full Text PDFIn order to address the issue of food contamination by microorganisms and effectively harness the antibacterial properties of nisin, we attempted to incorporate nisin into natural polymer films while addressing its inherent instability. An antibacterial food packaging film based on carboxymethyl chitosan (CCS) binding with L-cysteine (CYS) and oxidized konjac glucomannan (OKG) was developed through both Schiff base reaction and addition reaction of thiol aldehyde. To analyze the effect of addition reaction of thiol aldehyde on the CCS-CYS/OKG films' physicochemical properties, the CCS-CYS was prepared with different CYS combination rates, which were further used to fabricate composite films.
View Article and Find Full Text PDFOvarian function declines significantly as females enter middle-age, but the mechanisms underlying this decline remain unclear. Here, we utilize whole-organ imaging to observe a notable decrease in ovarian blood vessel (oBV) density and angiogenesis intensity of middle-aged mice. This leads to a diminished blood supply to the ovaries, resulting in inadequate development and maturation of ovarian follicles.
View Article and Find Full Text PDFSoil salinization is a major factor threatening global food security. Soil improvement strategies are therefore of great importance in mitigating the adverse effect of salt stress. Our study aimed to evaluate the effect of biochar (BC) and nitric acid-modified biochar (HBC) (1%, 2%, and 3%; m/m) on the properties of salinized soils and the morphological and physiological characteristics of pakchoi.
View Article and Find Full Text PDFMonitoring food freshness is considerably important for food safety. In this study, a smart pH-responsive fluorescence hydroxypropyl methyl cellulose-κ-carrageenan-fluorescein isothiocyanate-NH-CaAlO (H-K-F-N) film was prepared. Taking synergetic advantage of the pH-dependent behavior of fluorescein isothiocyanate dye and the luminescence characteristics of calcium aluminate phosphor, the film exhibited a unique strong pH-responsive fluorescence with an exceptional linear relationship (correlation coefficient, R = 0.
View Article and Find Full Text PDFHalides of the family LiMX (M = Y, In, Sc and so on, X = halogen) are emerging solid electrolyte materials for all-solid-state Li-ion batteries. They show greater chemical stability and wider electrochemical stability windows than existing sulfide solid electrolytes, but have lower room-temperature ionic conductivities. Here we report the discovery that the superionic transition in LiYCl is triggered by the collective motion of anions, as evidenced by synchrotron X-ray and neutron scattering characterizations and ab initio molecular dynamics simulations.
View Article and Find Full Text PDFSalinity is considered one of the abiotic stresses that have the greatest impact on soybean production worldwide. Lanthanum (La) is a rare earth element that can reduce adverse conditions on plant growth and productivity. However, the regulatory mechanism of La-mediated plant response to salt stress has been poorly studied, particularly in soybeans.
View Article and Find Full Text PDFSoil salinization is a major abiotic factor threatening rapeseed yields and quality worldwide, yet the adaptive mechanisms underlying salt resistance in rapeseed are not clear. Therefore, this study aimed to explore the differences in growth potential, sodium (Na) retention in different plant tissues, and transport patterns between salt-tolerant (HY9) and salt-sensitive (XY15) rapeseed genotypes, which cultivated in Hoagland's nutrient solution in either the with or without of 150 mM NaCl stress. The results showed that the inhibition of growth-related parameters of the XY15 genotype was higher than those of the HY9 in response to salt stress.
View Article and Find Full Text PDFFish Shellfish Immunol
March 2024
As a series of our previous studies reported, recombinant yeast can be the oral vaccines to deliver designed protein and DNA, as well as functional shRNA, into dendritic cells (DCs) in mice for specific immune regulation. Here, we report the further optimization of oral yeast-based vaccine from two aspects (yeast characteristics and recombinant DNA constitution) to improve the effect of immune regulation. After screening four genes in negative regulation of glucan synthesis in yeast (MNN9, GUP1, PBS2 and EXG1), this research combined HDR-based genome editing technology with Cre-loxP technology to acquire 15 gene-knockout strains without drug resistance-gene to exclude biosafety risks; afterward, oral feeding experiments were performed on the mice using 15 oral recombinant yeast-based vaccines constructed by the gene-knockout strains harboring pCMV-MSTN plasmid to screen the target strain with more effective inducing mstn-specific antibody which in turn increasing weight gain effect.
View Article and Find Full Text PDFSoil salinization has become a global problem that threatens farmland health and restricts crop production. Salt-affected soils seriously restrict the development of agricultural, mainly because of sodium ion (Na) toxicity, nutrient deficiency, and structural changes in the soil. Biochar is a carbon (C)-based substance produced by heating typical biomass waste at high temperatures in anaerobic circumstances.
View Article and Find Full Text PDFOvarian mesenchymal cells (oMCs) constitute a distinct microenvironment that supports folliculogenesis under physiological conditions. Supplementation of exogenous non-ovarian mesenchymal-related cells has been reported to be an efficient approach to improve ovarian functions. However, the development and cellular and molecular characteristics of endogenous oMCs remain largely unexplored.
View Article and Find Full Text PDFWe established an efficient and simplified single-cell proteomics (ES-SCP) workflow to realize proteomics profiling at the single-oocyte level. With the ES-SCP workflow, we constructed a deep coverage proteome library during oocyte maturation, which contained more than 6000 protein groups, and identified and quantified more than 4000 protein groups from a pool of only 15 oocytes at germinal vesicle (GV), GV breakdown (GVBD), and metaphase II (MII) stages. More than 1500 protein groups can be identified from single oocytes.
View Article and Find Full Text PDFOvarian granulosa cell tumors (GCTs) originate from granulosa cells (GCs) and represent the most common sex cord-stromal tumor in humans. However, the developmental regulations and molecular mechanisms underlying their etiology are largely unknown. In the current study, we combined a multi-fluorescent reporter mouse model with a conditional knockout mouse model, in which the tumor suppressor genes Pten and p27 were deleted in GCs, to perform cell lineage tracing of mutant GCs.
View Article and Find Full Text PDFThis study explored the effect of humor on teacher-student relationship quality (TSRQ) and student engagement by uncovering the mediating role of TSRQ and the moderating role of individual differences (personal sense of humor). Data were collected using a cross-sectional time-lag approach with 2 phases; 367 students participated. The hypotheses were tested with a moderated mediation model.
View Article and Find Full Text PDFDormant primordial follicles (PFs) are the most abundant reproductive resource in mammalian ovaries. With advances in the mechanism of study of the regulation of PF activation, PFs have been used to improve fertility in clinical practice. As a central controlling element of follicle activation signaling, the pre-granulosa cell-secreted stem cell factor (SCF; also known as KIT ligand, KITL), which initiates the growth of dormant oocytes, is an ideal natural activator that stimulates follicle activation.
View Article and Find Full Text PDFOvarian follicle is the basic functional unit of female reproduction, and is composed of oocyte and surrounding granulosa cells. In mammals, folliculogenesis strictly rely on gonadotropin regulations to determine the ovulation and the quality of eggs. However, the dynamic changes of protein-expressing profiles in follicles at different developmental stages remain largely unknown.
View Article and Find Full Text PDFBackground: Ovarian follicles, which are the basic units of female reproduction, are composed of oocytes and surrounding somatic (pre) granulosa cells (GCs). A recent study revealed that signaling in somatic preGCs controlled the activation (initial recruitment) of follicles in the adult ovaries, but it is also known that there are two waves of follicle with age-related heterogeneity in their developmental dynamics in mammals. Although this heterogeneity was proposed to be crucial for female reproduction, our understanding of how it arises and its significance is still elusive.
View Article and Find Full Text PDFRobust angiogenesis is continuously active in ovaries to remodel the ovary-body connections in mammals, but understanding of this unique process remains elusive. Here, we performed high-resolution, three-dimensional ovarian vascular imaging and traced the pattern of ovarian angiogenesis and vascular development in the long term. We found that angiogenesis was mainly active on ovarian follicles and corpus luteum and that robust angiogenesis constructs independent but temporary vascular networks for each follicle.
View Article and Find Full Text PDFCRISPR/Cas9-mediated homology-directed repair (HDR) can be leveraged to precisely engineer mammalian genomes. However, the inherently low efficiency of HDR often hampers to identify the desired modified cells. Here, we developed a novel universal surrogate reporter system that efficiently enriches for genetically modified cells arising from CRISPR/Cas9-induced HDR events (namely, the "HDR-USR" system).
View Article and Find Full Text PDFBase on the practical of MSTN-specific yeast-based protein vaccine in mice as described previously, this research was designed for developing a better DNA vaccine (a cascade of shIL21-MSTN yeast-based DNA vaccine) than solely MSTN yeast-based DNA vaccine to block the endogenous MSTN in the murine model. We first constructed the target vectors, including CMV-driven MSTN expression vector and a combined shIL21-MSTN vector which containing MSTN expression cassette and shIL21 (short hairpin RNA-IL21) expression cassette. After necessary validation, recombinant yeast vaccines harboring different vectors were well prepared.
View Article and Find Full Text PDFThe SNP within intron 3 of the porcine gene (G3072A) plays an important role for muscle growth and fat deposition in pigs. In this study, the StCas9 derived from together with the Drosha-mediated sgRNA-shRNA structure were combined to boost the G to A base editing on the SNP site, which we called "SNP editing." The codon-humanized StCas9 as we previously reported was firstly compared with the prevalently used SpCas9 derived from using our idiomatic surrogate report assay, and the StCas9 demonstrated a comparable targeting activity.
View Article and Find Full Text PDFJ Gastroenterol Hepatol
July 2018
Background And Aims: Various methods have been reported as aids to cecal intubation. This study aimed to prospectively investigate whether an abdominal obstetric binder (AOB) used during pregnancy and attached to the patients' abdomen during colonoscopy could facilitate effective colonoscopic insertion.
Methods: This was a prospective study of 451 consecutive outpatient colonoscopies performed by a single experienced endoscopist.
This study analyzed microRNA (miRNA) and mRNA expression profiles and investigated the biological characteristics of ESCC by using invasion and cytotoxicity cell models. miRNA profiles were evaluated through miRNA microarray. Transwell chamber and nedaplatin (NDP) were used to construct invasion and cytotoxicity cell models.
View Article and Find Full Text PDF