Publications by authors named "Ltaief L"

Article Synopsis
  • The review investigates electronic decay phenomena in superfluid helium nanodroplets when exposed to extreme ultraviolet radiation, highlighting their unique electronic properties.
  • Key processes include interatomic and intermolecular Coulombic decay, which involve energy transfer and can lead to ionization and low-energy electron emission.
  • The study utilizes advanced experimental and computational techniques, including ultrashort pulses from free-electron lasers, to better understand these interactions and their implications for other systems, particularly in biology.
View Article and Find Full Text PDF

Interatomic Coulombic decay (ICD) plays a crucial role in weakly bound complexes exposed to intense or high-energy radiation. So far, neutral or ionic atoms or molecules have been prepared in singly excited electron or hole states that can transfer energy to neighboring centers and cause ionization and radiation damage. Here we demonstrate that a doubly excited atom, despite its extremely short lifetime, can decay by ICD; evidenced by high-resolution photoelectron spectra of He nanodroplets excited to the 2s2p+ state.

View Article and Find Full Text PDF

Helium nanodroplets ("HNDs") are widely used for forming tailor-made clusters and molecular complexes in a cold, transparent, and weakly interacting matrix. The characterization of embedded species by mass spectrometry is often complicated by the fragmentation and trapping of ions in the HNDs. Here, we systematically study fragment ion mass spectra of HND-aggregated water and oxygen clusters following their ionization by charge transfer ionization ("CTI") and Penning ionization ("PEI").

View Article and Find Full Text PDF

Radiation damage in biological systems by ionizing radiation is predominantly caused by secondary processes such as charge and energy transfer leading to the breaking of bonds in DNA. Here, we study the fragmentation of cytosine (Cyt) and thymine (Thy) molecules, clusters and microhydrated derivatives induced by direct and indirect ionization initiated by extreme-ultraviolet (XUV) irradiation. Photofragmentation mass spectra and photoelectron spectra of free Cyt and Thy molecules are compared with mass and electron spectra of Cyt/Thy clusters and microhydrated Cyt/Thy molecules formed by aggregation in superfluid helium (He) nanodroplets.

View Article and Find Full Text PDF

Helium nanodroplets are ideal model systems to unravel the complex interaction of condensed matter with ionizing radiation. Here we study the effect of purely elastic electron scattering on angular and energy distributions of photoelectrons emitted from He nanodroplets of variable size (10-10 atoms per droplets). For large droplets, photoelectrons develop a pronounced anisotropy along the incident light beam due to a shadowing effect within the droplets.

View Article and Find Full Text PDF

Ionization of matter by energetic radiation generally causes complex secondary reactions that are hard to decipher. Using large helium nanodroplets irradiated by extreme ultraviolet (XUV) photons, we show that the full chain of processes ensuing primary photoionization can be tracked in detail by means of high-resolution electron spectroscopy. We find that elastic and inelastic scattering of photoelectrons efficiently induces interatomic Coulombic decay (ICD) in the droplets.

View Article and Find Full Text PDF

Photoionization spectroscopy and mass spectrometry of doped helium (He) nanodroplets rely on the ability to efficiently detect ions and/or electrons. Using a commercial quadrupole mass spectrometer and a photoelectron-photoion coincidence spectrometer, we systematically measure yields of ions and electrons created in pure and doped He nanodroplets in a wide size range and in two ionization regimes-direct ionization and secondary ionization after resonant photoexcitation of the droplets. For two different types of dopants (oxygen molecules, O2, and lithium atoms, Li), we infer the optimal droplet size to maximize the yield of ejected ions.

View Article and Find Full Text PDF

X-Ray as well as electron diffraction are powerful tools for structure determination of molecules. Studies on randomly oriented molecules in the gas phase address cases in which molecular crystals cannot be generated or the interaction-free molecular structure is to be addressed. Such studies usually yield partial geometrical information, such as interatomic distances.

View Article and Find Full Text PDF

In this work, we present a new endstation for the AMOLine of the ASTRID2 synchrotron at Aarhus University, which combines a cluster and nanodroplet beam source with a velocity map imaging and time-of-flight spectrometer for coincidence imaging spectroscopy. Extreme-ultraviolet spectroscopy of free nanoparticles is a powerful tool for studying the photophysics and photochemistry of resonantly excited or ionized nanometer-sized condensed-phase systems. Here, we demonstrate this capability by performing photoelectron-photoion coincidence experiments with pure and doped superfluid helium nanodroplets.

View Article and Find Full Text PDF

The fragmentation dynamics of the gas-phase, doubly charged camphor molecule, formed by Auger decay following carbon 1s ionisation, using soft X-ray synchrotron radiation, is presented in this work. The technique of velocity map imaging combined with a photoelectron-photoion-photoion coincidence (VMI-PEPIPICO) is used for both electron energy and ion momentum (in-sequence) measurements. The experimental study is complemented by molecular dynamics simulation, performed with an (moles, volume, and temperature) ensemble.

View Article and Find Full Text PDF

We report on a joint experimental and theoretical study of photoelectron circular dichroism (PECD) in methyloxirane. By detecting O 1s photoelectrons in coincidence with fragment ions, we deduce the molecule's orientation and photoelectron emission direction in the laboratory frame. Thereby, we retrieve a fourfold differential PECD clearly beyond 50%.

View Article and Find Full Text PDF

Alkali metal dimers attached to the surface of helium nanodroplets are found to be efficiently doubly ionized by electron transfer mediated decay (ETMD) when photoionizing the helium droplets. This process is evidenced by detecting in coincidence two energetic ions created by Coulomb explosion and one low-kinetic energy electron. The kinetic energy spectra of ions and electrons are reproduced by simple model calculations based on diatomic potential energy curves, and are in agreement with ab initio calculations for the He-Na2 and He-KRb systems.

View Article and Find Full Text PDF

Atoms and molecules attached to rare-gas clusters are ionized by an interatomic autoionization process traditionally termed "Penning ionization" when the host cluster is resonantly excited. Here we analyze this process in the light of the interatomic Coulombic decay (ICD) mechanism, which usually contains a contribution from charge exchange at a short interatomic distance and one from virtual photon transfer at a large interatomic distance. For helium (He) nanodroplets doped with alkali metal atoms (Li, Rb), we show that long-range and short-range contributions to the interatomic autoionization can be clearly distinguished by detecting electrons and ions in coincidence.

View Article and Find Full Text PDF

Most large molecules are chiral in their structure: they exist as two enantiomers, which are mirror images of each other. Whereas the rovibronic sublevels of two enantiomers are almost identical (neglecting a minuscular effect of the weak interaction), it turns out that the photoelectric effect is sensitive to the absolute configuration of the ionized enantiomer. Indeed, photoionization of randomly oriented enantiomers by left or right circularly polarized light results in a slightly different electron flux parallel or antiparallel with respect to the photon propagation direction-an effect termed photoelectron circular dichroism (PECD).

View Article and Find Full Text PDF