Our recent study revealed that fluorescent lamp light can penetrate deep into the brain of mice and rats leading to the development of typical histological characteristics associated with Parkinson's disease such as the loss of dopamine neurons in the substantia nigra. Monochromatic LED lights were thus used in this work to deepen our knowledge on the effects of the major wavelength peaks of fluorescent light on mouse and human dopaminergic cells. In particular, we exposed immortalized dopaminergic MN9D neuronal cells, primary cultures of mouse mesencephalic dopaminergic cells and human dopaminergic neurons differentiated from induced pluripotent stem cells (hiPSC) to different LED light wavelengths.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2023
Two-dimensional (2D) transition metal dichalcogenides (TMDs) and metal chalcogenides (MCs), despite their excellent gas sensing properties, are subjected to spontaneous oxidation in ambient air, negatively affecting the sensor's signal reproducibility in the long run. Taking advantage of spontaneous oxidation, we synthesized fully amorphous -SnO 2D flakes (≈30 nm thick) by annealing in air 2D SnSe for two weeks at temperatures below the crystallization temperature of SnO ( < 280 °C). These engineered -SnO interfaces, preserving all the precursor's 2D surface-to-volume features, are stable in dry/wet air up to 250 °C, with excellent baseline and sensor's signal reproducibility to HS (400 ppb to 1.
View Article and Find Full Text PDFWe investigate the oxidation mechanism of the layered model system GeAs. X-ray photoelectron spectroscopy experiments performed by irradiating an individual flake with synchrotron radiation in the presence of oxygen show that while As leaves the GeAs surface upon oxidation, a Ge-rich ultrathin oxide film is being formed in the topmost layer of the flake. We develop a theoretical model that supports the layer-by-layer oxidation of GeAs, with a logarithmic kinetics.
View Article and Find Full Text PDFTwo-dimensional (2D) magnets such as chromium trihalides CrX (X = I, Br, Cl) represent a frontier for spintronics applications and, in particular, CrCl has attracted research interest due its relative stability under ambient conditions without rapid degradation, as opposed to CrI. Herein, mechanically exfoliated CrCl flakes are characterized at the atomic scale and the electronic structures of pristine, oxidized, and defective monolayer CrCl phases are investigated employing density functional theory (DFT) calculations, scanning tunneling spectroscopy (STS), core level X-ray photoemission spectroscopy (XPS), and valence band XPS and ultraviolet photoemission spectroscopy (UPS). As revealed by atomically resolved transmission electron microscopy (TEM) and energy dispersive X-ray (EDX) analysis, the CrCl flakes show spontaneous surface oxidation upon air exposure with an extrinsic long-range ordered oxidized O-CrCl structure and amorphous chromium oxide formation on the edges of the flakes.
View Article and Find Full Text PDFLiquid-phase exfoliation is the most suitable platform for large-scale production of two-dimensional materials. One of the main open challenges is related to the quest of green and bioderived solvents to replace state-of-the-art dispersion media, which suffer several toxicity issues. Here, we demonstrate the suitability of methyl-5-(dimethylamino)-2-methyl-5-oxopentanoate (Rhodiasolv Polarclean) for sonication-assisted liquid-phase exfoliation of layered materials for the case-study examples of WS, MoS, and graphene.
View Article and Find Full Text PDFAccumulation of lipofuscin deposits in the retinal pigment epithelium (RPE) is one of the main events involved in age-related macular degeneration and its increase together with RPE dysfunction, blood retinal barrier disruption and photoreceptors death progressively leads to blindness. Lipofuscin is the main autofluorescent (AF) component of the retina and therapies to counteract its deposition are a main goal to be achieved, since effective treatments have not yet been identified. Here, we first investigated the spatio-temporal pattern of AF deposits accumulation in the light-damage model of age-related macular degeneration.
View Article and Find Full Text PDFRetinal pigment epithelium (RPE) dysfunction and degeneration underlie the development of age-related macular degeneration (AMD), which is the leading cause of blindness worldwide. In this study, we investigated whether cerium oxide nanoparticles (CeO-NPs or nanoceria), which are anti-oxidant agents with auto-regenerative properties, are able to preserve the RPE. On ARPE-19 cells, we found that CeO-NPs promoted cell viability against HO-induced cellular damage.
View Article and Find Full Text PDFThe tumor-specific tetrabranched peptide NT4 binds membrane sulfate glycosaminoglycans and receptors belonging to the low density lipoprotein receptor-related protein (LRP) family, like LRP6, which are overexpressed in cancer. The binding occurs through a multimeric positively-charged motif of NT4 that interacts with negatively charged motives in both glycosaminoglycans and LRP receptors. LRP6 has an essential function in canonical Wnt signaling, acting together with receptors of the Frizzled family as coreceptor for Wnt ligands.
View Article and Find Full Text PDFMetal-insulator-semiconductor-insulator-metal (MISIM) heterostructures, with rectifying current-voltage characteristics and photosensitivity in the visible and near-infrared spectra, are fabricated and studied. It is shown that the photocurrent can be enhanced by adding a multi-walled carbon nanotube film in the contact region to achieve a responsivity higher than 100 mA W - 1 under incandescent light of 0.1 mW cm - 2 .
View Article and Find Full Text PDFNanostructured materials have wide potential applicability as field emitters due to their high aspect ratio. We hydrothermally synthesized MoS nanoflowers on copper foil and characterized their field emission properties, by applying a tip-anode configuration in which a tungsten tip with curvature radius down to 30-100 nm has been used as the anode to measure local properties from small areas down to 1-100 µm. We demonstrate that MoS nanoflowers can be competitive with other well-established field emitters.
View Article and Find Full Text PDFCerium Oxide nanoparticles are antioxidant agents with autoregenerative radical scavenging activities, effective in preventing degeneration of photoreceptors of an albino rat when intravitreally injected prior to exposure to high intensity light. In this study, we performed a post injury administration of nanoceria and a long term analysis of their neuroprotective properties in order to better simulate the therapeutic treatment as it is carried out on patients with age related macular degeneration, and while photoreceptor degeneration is ongoing. We also injected nanoceria labelled with fluorescein isothiocianate in order to analyze their persistence after a single administration in a damaged retina and to investigate how long they both maintain their neuroprotective properties and where they localize in the retina.
View Article and Find Full Text PDFBackground: Near-infrared quantum dots (NIR QDs) are a new class of fluorescent labels with excellent bioimaging features, such as high fluorescence intensity, good fluorescence stability, sufficient electron density, and strong tissue-penetrating ability. For all such features, NIR QDs have great potential for early cancer diagnosis, in vivo tumor imaging and high resolution electron microscopy studies on cancer cells.
Results: In the present study we constructed NIR QDs functionalized with the NT4 cancer-selective tetrabranched peptides (NT4-QDs).
The photocatalytic degradation of the model pollutant carbamazepine (CBZ) was investigated under simulated solar irradiation with an N-doped TiO₂-coated Al₂O₃ photocatalytic membrane, using different water types. The photocatalytic membrane combines photocatalysis and membrane filtration in a single step. The impact of each individual constituent such as acidity, alkalinity, dissolved organic matter (DOM), divalent cations (Mg and Ca), and Cl on the degradation of CBZ was examined.
View Article and Find Full Text PDFWe investigated the effects of continuous artificial light exposure on the mouse substantia nigra (SN). A three month exposure of C57Bl/6J mice to white fluorescent light induced a 30% reduction in dopamine (DA) neurons in SN compared to controls, accompanied by a decrease of DA and its metabolites in the striatum. After six months of exposure, neurodegeneration progressed slightly, but the level of DA returned to the basal level, while the metabolites increased with respect to the control.
View Article and Find Full Text PDFPhotoelectron Spectroscopy (PS) and Near-Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy have been used to investigate the occupied and empty density of states of biphenylene films of different thicknesses, deposited onto a Cu(111) crystal. The obtained results have been compared to previous gas phase spectra and single molecule Density Functional Theory (DFT) calculations to get insights into the possible modification of the molecular electronic structure in the film induced by the adsorption on a surface. Furthermore, NEXAFS measurements allowed characterizing the variation of the molecular arrangement with the film thickness and helped to clarify the substrate-molecule interaction.
View Article and Find Full Text PDFCommercial α-Al2O3 photocatalytic membranes with a pore size of 200 and 800-nm were coated with N-doped TiO2 photocatalytic film using a sol-gel technique for concurrent bottom-up filtration and photocatalytic oxidation. X-ray diffraction confirmed that the deposited N-doped TiO2 films are in the form of anatase with 78-84% coverage of the membrane surface. The concentration of N found by X-ray photoelectron spectroscopy was in the range of 0.
View Article and Find Full Text PDFTaxanes are highly effective chemotherapeutic drugs against proliferating cancer and an established option in the standard treatment of ovarian and breast cancer. However, treatment with paclitaxel is associated with severe side effects, including sensory axonal neuropathy, and its poor solubility in water complicates its formulation. In this paper we report the in vitro and in vivo activity of a new form of paclitaxel, modified for conjugation with a tumor-selective tetrabranched peptide carrier (NT4).
View Article and Find Full Text PDFIn this paper, we reported the development of a micro-flow label-free impedimetric biosensor based on the use of thin-film interdigitated gold array microelectrodes (IDA) for the detection of carbohydrate antigen 125 (CA125). The immunosensor is developed through the electropolymerization of anthranilic acid (AA) on the surface of IDA electrodes followed by the covalent attachment of anti-CA125 monoclonal antibody. CA125 protein affinity reaction was then evaluated by means of electrochemical impedance spectroscopy (EIS).
View Article and Find Full Text PDFNovel polystyrene-based molecularly imprinted polymer nanofibers were synthesized through the electrospinning technique. The molecularly imprinted polymers were prepared using a non-covalent approach and atrazine as template. For comparison, nonimprinted polymer nanofibers were also synthesized.
View Article and Find Full Text PDFRecent data indicates that prolonged bright light exposure of rats induces production of neuromelanin and reduction of tyrosine hydroxylase positive neurons in the substantia nigra. This effect was the result of direct light reaching the substantia nigra and not due to alteration of circadian rhythms. Here, we measured the spectrum of light reaching the substantia nigra in rats and analysed the pathway that light may take to reach this deep brain structure in humans.
View Article and Find Full Text PDFM33 is a branched peptide currently under preclinical characterization for the development of a new antibacterial drug against gram-negative bacteria. Here, we report its pegylation at the C-terminus of the three-lysine-branching core and the resulting increase in stability to Pseudomonas aeruginosa elastase. This protease is a virulence factor that acts by destroying peptides of the native immune system.
View Article and Find Full Text PDFTo shed light on the metal 3d electronic structure of manganese phthalocyanine, so far controversial, we performed photoelectron measurements both in the gas phase and as thin film. With the purpose of explaining the experimental results,three different electronic configurations close in energy to one another were studied by means of density functional theory. The comparison between the calculated valence band density of states and the measured spectra revealed that in the gas phase the molecules exhibit a mixed electronic configuration, while in the thin film, manganese phthalocyanine finds itself in the theoretically computed ground state, namely, the b1(2g)e3(g)a1(1g)b0(1g) electronic configuration.
View Article and Find Full Text PDFThe authors report on the realization of ordered arrays of light-emitting conjugated polymer nanofibers by near-field electrospinning. The fibers, made from poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene], have diameters of a few hundreds of nanometers and their emission peaked at 560 nm. The observed blue-shift compared to the emission from reference films is attributed to different polymer packing in the nanostructures.
View Article and Find Full Text PDFIn previous papers we demonstrated that tetrabranched peptides containing the sequence of human neurotensin, NT4, are much more selective than native monomeric analogues for binding to different human cancer cells and tissues. We show here that the much higher binding of NT4 peptides, with respect to native neurotensin, to either cancer cell lines or human cancer surgical samples is generated by a switch in selectivity toward additional membrane receptors, which are specifically expressed by different human cancers. We demonstrate that the branched structure provides NT4 with ability to bind heparin and receptors belonging to the low density lipoprotein receptor (LDLR) family, known to be involved in cancer biology.
View Article and Find Full Text PDF