Publications by authors named "Lozovoĭ A"

Establishing connections between material impurities and charge transport properties in emerging electronic and quantum materials, such as wide-bandgap semiconductors, demands new diagnostic methods tailored to these unique systems. Many such materials host optically-active defect centers which offer a powerful in situ characterization system, but one that typically relies on the weak spin-electric field coupling to measure electronic phenomena. In this work, charge-state sensitive optical microscopy is combined with photoelectric detection of an array of nitrogen-vacancy (NV) centers to directly image the flow of charge carriers inside a diamond optoelectronic device, in 3D and with temporal resolution.

View Article and Find Full Text PDF

Understanding carrier trapping in solids has proven key to semiconductor technologies, but observations thus far have relied on ensembles of point defects, where the impact of neighboring traps or carrier screening is often important. Here, we investigate the capture of photogenerated holes by an individual negatively charged nitrogen-vacancy (NV) center in diamond at room temperature. Using an externally gated potential to minimize space-charge effects, we find the capture probability under electric fields of variable sign and amplitude shows an asymmetric-bell-shaped response with maximum at zero voltage.

View Article and Find Full Text PDF

The silicon vacancy (SiV) center in diamond is typically found in three stable charge states, SiV, SiV, and SiV, but studying the processes leading to their formation is challenging, especially at room temperature, due to their starkly different photoluminescence rates. Here, we use confocal fluorescence microscopy to activate and probe charge interconversion between all three charge states under ambient conditions. In particular, we witness the formation of SiV via the two-step capture of diffusing, photogenerated holes, a process we expose both through direct SiV fluorescence measurements at low temperatures and confocal microscopy observations in the presence of externally applied electric fields.

View Article and Find Full Text PDF

A broad effort is underway to understand and harness the interaction between superconductors and spin-active color centers with an eye on hybrid quantum devices and novel imaging modalities of superconducting materials. Most work, however, overlooks the interplay between either system and the environment created by the color center host. Here we use a diamond scanning probe to investigate the spin dynamics of a single nitrogen-vacancy (NV) center proximal to a superconducting film.

View Article and Find Full Text PDF

The application of color centers in wide-bandgap semiconductors to nanoscale sensing and quantum information processing largely rests on our knowledge of the surrounding crystalline lattice, often obscured by the countless classes of point defects the material can host. Here, we monitor the fluorescence from a negatively charged nitrogen-vacancy (NV) center in diamond as we illuminate its vicinity. Cyclic charge state conversion of neighboring point defects sensitive to the excitation beam leads to a position-dependent stream of photo-generated carriers whose capture by the probe NV leads to a fluorescence change.

View Article and Find Full Text PDF
Article Synopsis
  • Traditional models of space-charge potentials focus on steady-state equilibrium, which doesn’t accurately reflect the behavior in wide band gap semiconductors with low defect concentrations.
  • This study utilizes color centers in diamond to inject carriers into the crystal and observe how they behave under various potentials.
  • The research reveals that by controlling the timing of carrier injection and the applied voltages, we can create and manipulate metastable charge patterns, demonstrating the potential for space-charge-induced carrier guidance.
View Article and Find Full Text PDF

We articulate confocal microscopy and electron spin resonance to implement spin-to-charge conversion in a small ensemble of nitrogen-vacancy (NV) centers in bulk diamond and demonstrate charge conversion of neighboring defects conditional on the NV spin state. We build on this observation to show time-resolved NV spin manipulation and ancilla-charge-aided NV spin state detection via integrated measurements. Our results hint at intriguing opportunities in the development of novel measurement strategies in fundamental science and quantum spintronics as well as in the search for enhanced forms of color-center-based metrology down to the limit of individual point defects.

View Article and Find Full Text PDF

We present NECI, a state-of-the-art implementation of the Full Configuration Interaction Quantum Monte Carlo (FCIQMC) algorithm, a method based on a stochastic application of the Hamiltonian matrix on a sparse sampling of the wave function. The program utilizes a very powerful parallelization and scales efficiently to more than 24 000 central processing unit cores. In this paper, we describe the core functionalities of NECI and its recent developments.

View Article and Find Full Text PDF

A self-consistent approximation beyond the Redfield limit and without using the Anderson-Weiss approximation for the Free Induction Decay (FID) of deuteron spins belonging to polymer chains undergoing reptation is formulated. The dynamical heterogeneity of the polymer segments created by the end segments is taken into account. Within an accuracy of slow-changing logarithmic factors, FID can be qualitatively described by a transition from an initial pseudo-Gaussian to a stretched-exponential decay at long times.

View Article and Find Full Text PDF

We identify and rectify a crucial source of bias in the initiator full configuration interaction quantum Monte Carlo algorithm. Noninitiator determinants (i.e.

View Article and Find Full Text PDF

Segmental dynamics of a highly entangled melt of linear polyethylene-alt-propylene with a molecular weight of 200 kDa was studied with a novel proton nuclear magnetic resonance (NMR) approach based upon H → H isotope dilution as applied to a solid-echo build-up function I(t), which is constructed from the NMR spin echo signals arising from the Hahn echo (HE) and two variations of the solid-echo pulse sequence. The isotope dilution enables the separation of inter- and intramolecular contributions to this function and allows one to extract the segmental mean-squared displacements in the millisecond time range, which is hardly accessible by other experimental methods. The proposed technique in combination with time-temperature superposition yields information about segmental translation in polyethylene-alt-propylene over 6 decades in time from 10 s up to 1 s.

View Article and Find Full Text PDF

A simple and fast method for the investigation of segmental diffusion in high molar mass polymer melts is presented. The method is based on a special function, called proton dipolar-correlation build-up function, which is constructed from Hahn Echo signals measured at times t and t/2. The initial rise of this function contains additive contributions from both inter- and intramolecular magnetic dipole-dipole interactions.

View Article and Find Full Text PDF

We demonstrate a model for stoichiometric and reduced titanium dioxide intended for use in molecular dynamics and other atomistic simulations and based in the polarizable ion tight binding theory. This extends the model introduced in two previous papers from molecular and liquid applications into the solid state, thus completing the task of providing a comprehensive and unified scheme for studying chemical reactions, particularly aimed at problems in catalysis and electrochemistry. As before, experimental results are given priority over theoretical ones in selecting targets for model fitting, for which we used crystal parameters and band gaps of titania bulk polymorphs, rutile and anatase.

View Article and Find Full Text PDF

A revised water model intended for use in condensed phase simulations in the framework of the self consistent polarizable ion tight binding theory is constructed. The model is applied to water monomer, dimer, hexamers, ice, and liquid, where it demonstrates good agreement with theoretical results obtained by more accurate methods, such as DFT and CCSD(T), and with experiment. In particular, the temperature dependence of the self diffusion coefficient in liquid water predicted by the model, closely reproduces experimental curves in the temperature interval between 230 K and 350 K.

View Article and Find Full Text PDF

As is now well established, a first order expansion of the Hohenberg-Kohn total energy density functional about a trial input density, namely, the Harris-Foulkes functional, can be used to rationalize a non self consistent tight binding model. If the expansion is taken to second order then the energy and electron density matrix need to be calculated self consistently and from this functional one can derive a charge self consistent tight binding theory. In this paper we have used this to describe a polarizable ion tight binding model which has the benefit of treating charge transfer in point multipoles.

View Article and Find Full Text PDF

Typical three-atrium heart constitute a rare inborn heart failure, in which pulmonary veins drain into the proximal additional camera of the left atrium, separated from distal left pericardium cavity of it own by diaphragm, in which there is one or more restrictive apertures. Of 6770 patients, consecutively operated on by one surgeon, in 15 (0.21%) ageing from 7 mo to 30 years the three-atrium heart was revealed.

View Article and Find Full Text PDF

Selective oxidation of the surface of an ordered alloy requires redistribution of the atomic species in the vicinity of the surface. This process can be understood in terms of the formation and movements of point defects in the compound. On the basis of ab initio density-functional calculation we found both the creation of exchange defects near the NiAl surface and segregation of Ni vacancies to the top layer to be extremely favorable in the presence of oxygen.

View Article and Find Full Text PDF