Lipid nanocapsules (LNCs) used as nanomedicine have been developed to enhance pharmacokinetics and decrease side effects of drugs, particularly for cancer therapies. After intravenous administration, LNCs possess an important hepatic tropism however, few data exist about their toxicity and even less after repeated exposure. This study aimed to assess the in vitro toxicity and internalization of unloaded LNCs, of 50 and 100 nm size, on HepG2 and HepaRG liver cell lines.
View Article and Find Full Text PDFPolysaccharide-based nanogels offer a wide range of chemical compositions and are of great interest due to their biodegradability, biocompatibility, non-toxicity, and their ability to display pH, temperature, or enzymatic response. In this work, we synthesized monodisperse and tunable pH-sensitive nanogels by crosslinking, through reductive amination, chitosan and partially oxidized maltodextrins, by keeping the concentration of chitosan close to its overlap concentration, i.e.
View Article and Find Full Text PDFTamoxifen, the gold standard drug for endocrine therapy for breast cancer, modulates the phosphorylation status of the TAU protein in Alzheimer's disease by inhibiting CDK5 kinase activity. Its binding to p25 prevents CDK5/p25 complexation and hence a decrease of CDK5 activity. In breast tumors, this complex is involved in the proliferation and survival of cancer cells, as well as in the disease's prognosis.
View Article and Find Full Text PDFThe goal of this study was to establish a procedure for gene delivery mediated by cationic liposomes in quiescent differentiated HepaRG™ human hepatoma cells. We first identified several cationic lipids promoting efficient gene transfer with low toxicity in actively dividing HepG2, HuH7, BC2 and progenitor HepaRG™ human hepatoma cells. The lipophosphoramidate Syn1-based nanovector, which allowed the highest transfection efficiencies of progenitor HepaRG™ cells, was next used to transfect differentiated HepaRG™ cells.
View Article and Find Full Text PDFWe recently demonstrated the strong tropism of George Baker (GB) Virus A (GBVA10-9) and protein (CPB) derived synthetic peptides towards hepatoma cells. In a first approach, these peptides were covalently bound to poly(benzyl malate) (PMLABe) and poly(ethylene glycol)--PMLABe (PEG--PMLABe) (co)polymers, and corresponding peptide-decorated nanoparticles (NPs) were prepared by nanoprecipitation. We showed that peptide enhanced NPs internalization by hepatoma cells.
View Article and Find Full Text PDFIn order to identify the peptides, selected from the literature, that exhibit the strongest tropism towards human hepatoma cells, cell uptake assays were performed using biotinylated synthetic peptides bound to fluorescent streptavidin or engrafted onto nanoparticles (NPs), prepared from biotin-poly(ethylene glycol)--poly(benzyl malate) (Biot-PEG--PMLABe) via streptavidin bridging. Two peptides, derived from the circumsporozoite protein of - (CPB) and George Baker (GB) Virus A (GBVA10-9), strongly enhanced the endocytosis of both streptavidin conjugates and NPs in hepatoma cells, compared to primary human hepatocytes and non-hepatic cells. Unexpectedly, the uptake of CPB- and GBVA10-9 functionalized PEG--PMLABe-based NPs by hepatoma cells involved, at least in part, the peptide binding to apolipoproteins, which would promote NP's interactions with cell membrane receptors of HDL particles.
View Article and Find Full Text PDF(1) Background: The impact of occupational exposure to high doses of pesticides on hematologic disorders is widely studied. Yet, lifelong exposure to low doses of pesticides, and more particularly their cocktail effect, although poorly known, could also participate to the development of such hematological diseases as myelodysplastic syndrome (MDS) in elderly patients. (2) Methods: In this study, a cocktail of seven pesticides frequently present in water and food (maneb, mancozeb, iprodione, imazalil, chlorpyrifos ethyl, diazinon and dimethoate), as determined by the European Food Safety Authority, were selected.
View Article and Find Full Text PDFRecently, short synthetic peptides have gained interest as targeting agents in the design of site-specific nanomedicines. In this context, our work aimed at developing new tools for the diagnosis and/or therapy of hepatocellular carcinoma (HCC) by grafting the hepatotropic George Baker (GB) virus A (GBVA10-9) and protein (CPB)-derived peptides to the biocompatible poly(benzyl malate), PMLABe. We successfully synthesized PMLABe derivatives end-functionalized with peptides GBVA10-9, CPB, and their corresponding scrambled peptides through a thiol/maleimide reaction.
View Article and Find Full Text PDFIdentified in 1973, somatostatin (SST) is a cyclic hormone peptide with a short biological half-life. Somatostatin receptors (SSTRs) are widely expressed in the whole body, with five subtypes described. The interaction between SST and its receptors leads to the internalization of the ligand-receptor complex and triggers different cellular signaling pathways.
View Article and Find Full Text PDFHydrophobic and amphiphilic derivatives of the biocompatible and biodegradable poly(dimethylmalic acid) (PdiMeMLA), varying by the nature of the lateral chains and the length of each block, respectively, have been synthesized by anionic ring-opening polymerization (aROP) of the corresponding monomers using an initiator/base system, which allowed for very good control over the (co)polymers' characteristics (molar masses, dispersity, nature of end-chains). Hydrophobic and core-shell nanoparticles (NPs) were then prepared by nanoprecipitation of hydrophobic homopolymers and amphiphilic block copolymers, respectively. Negatively charged NPs, showing hydrodynamic diameters (Dh) between 50 and 130 nm and narrow size distributions (0.
View Article and Find Full Text PDFCigarette smoke exposure (CS) is the main risk factor for chronic obstructive pulmonary disease (COPD). Macrophages have an important role in COPD because they release pro-inflammatory and anti-inflammatory cytokines. The present study's we investigate the functional changes in macrophages and monocytes exposed to cigarette smoke extract (CSE).
View Article and Find Full Text PDFCyclin Dependent Kinases (CDKs) represent a large family of serine/threonine protein kinases that become active upon binding to a Cyclin regulatory partner. CDK/cyclin complexes recently identified, as well as "canonical" CDK/Cyclin complexes regulating cell cycle, are implicated in the regulation of gene expression via the phosphorylation of key components of the transcription and pre-mRNA processing machineries. In this review, we summarize the role of CDK/cyclin-dependent phosphorylation in the regulation of transcription and RNA splicing and highlight recent findings that indicate the involvement of CDK11/cyclin L complexes at the cross-roads of cell cycle, transcription and RNA splicing.
View Article and Find Full Text PDFEthanol is the most frequently psychoactive substance used in the world, leading to major public health problems with several millions of deaths attributed to alcohol consumption each year. Metabolism of ethanol occurs mainly in the liver via the predominant oxidative metabolism pathway involving phase I enzymes including alcohol dehydrogenases (ADH), cytochrome P450 (CYP) 2E1 and catalase. In a lesser extent, an alternative non-oxidative pathway also contributes to the metabolism of ethanol, which involves the uridine diphospho-glucuronosyltransferase (UGT) and sulfotransferase (SULT) phase II enzymes.
View Article and Find Full Text PDFA one-pot, two-step method for the preparation of degradable PEG is here presented. The full process addresses the requirements imposed by green chemistry and involves the use of a single and nontoxic non-eutectic mixture of organocatalysts. The strategy relies on the polycondensation of PEG800 after its functionalization by bio-derived 5-membered γ-butyrolactone.
View Article and Find Full Text PDFHuman hepatoma HepaRG cells express most drug metabolizing enzymes and constitute a pertinent in vitro alternative cell system to primary cultures of human hepatocytes in order to determine drug metabolism and evaluate the toxicity of xenobiotics. In this work, we established novel transgenic HepaRG cells transduced with lentiviruses encoding the reporter green fluorescent protein (GFP) transcriptionally regulated by promoter sequences of cytochromes P450 (CYP) 1A1/2, 2B6 and 3A4 genes. Here, we demonstrated that GFP-biosensor transgenes shared similar expression patterns with the corresponding endogenous CYP genes during proliferation and differentiation in HepaRG cells.
View Article and Find Full Text PDFThe development of synthetic strategies to produce statistical copolymers based on l-lactide (l-LA) and ε-caprolactone (CL), denoted as P(LA- stat-CL), remains highly challenging in polymer chemistry. This is due to the differing reactivity of the two monomers during their ring-opening copolymerization (ROcP). Yet, P(LA- stat-CL) materials are highly sought after as they combine the properties of both polylactide (PLA) and poly(ε-caprolactone) (PCL).
View Article and Find Full Text PDFThe design of drug-loaded nanoparticles (NPs) appears to be a suitable strategy for the prolonged plasma concentration of therapeutic payloads, higher bioavailability, and the reduction of side effects compared with classical chemotherapies. In most cases, NPs are prepared from (co)polymers obtained through chemical polymerization. However, procedures have been developed to synthesize some polymers via enzymatic polymerization in the absence of chemical initiators.
View Article and Find Full Text PDFLiver malignancies, either primary tumours (mainly hepatocellular carcinoma and cholangiocarcinoma) or secondary hepatic metastases, are a major cause of death, with an increasing incidence. Among them, hepatocellular carcinoma (HCC) presents with a dark prognosis because of underlying liver diseases and an often late diagnosis. A curative surgical treatment can therefore only be proposed in 20 to 30% of the patients.
View Article and Find Full Text PDFFundam Clin Pharmacol
February 2019
Alcohol consumption is considered to be the third leading cause of death in the United States. In addition to its direct toxicity, ethanol has two contrasting effects on the immune system: the nucleotide oligomerization domain-like receptor pyrin domain-containing-3 (NLRP3) inflammasome is inhibited by acute ethanol exposure but activated by chronic ethanol exposure. Purinergic receptors (especially the P2X7 receptor) are able to activate the NLRP3 inflammasome and are involved in many ethanol-related diseases (such as gout, pulmonary fibrosis, alcoholic steatohepatitis, and certain cancers).
View Article and Find Full Text PDFCYP2E1 activity is measured in vitro and in vivo via hydroxylation of the Chlorzoxazone (CHZ) producing the 6-hydroxychlorzoxazone (OH-CHZ) further metabolized as a glucuronide excreted in urine. Thus, the quantification of the OH-CHZ following enzymatic hydrolysis of CHZ-derived glucuronide appears to be a reliable assay to measure the CYP2E1 activity without direct detection of this glucuronide. However, OH-CHZ hydrolyzed from urinary glucuronide accounts for less than 80% of the CHZ administrated dose in humans leading to postulate the production of other unidentified metabolites.
View Article and Find Full Text PDFPurpose: This study aimed at identifying prior therapy dosimetric parameters using Tc-labeled macro-aggregates of albumin (MAA) that are associated with contralateral hepatic hypertrophy occurring after unilobar radioembolization of hepatocellular carcinoma (HCC) performed with Y-loaded glass microspheres.
Methods: The dosimetry data of 73 HCC patients were collected prior to the treatment with Y-loaded microspheres for unilateral disease. The injected liver dose (ILD), the tumor dose (TD) and healthy injected liver dose (HILD) were calculated based on MAA quantification.
In this study, we evaluated cationic liposomes prepared from diether-NH and egg phosphatidylcholine (EPC) for in vitro gene delivery. The impact of the lipid composition, i.e.
View Article and Find Full Text PDFIn the past, several systems of drug delivery carriers have been designed with a high capacity to target specific cells and/or tissues and a reduced non-specific toxicity. In this context, we synthesized and characterized novel poly(malic acid) derivatives bearing Doxorubicin (Dox), Poly(ethylene glycol) (PEG) and/or N-Acetyl Galactosamine (NAcGal) for drug delivery. These poly(malic acid) derivatives were obtained by chemical modification of the carboxylic acid lateral groups of poly(malic acid) (PMLA).
View Article and Find Full Text PDFThe present work reports the investigation of the biocompatibility, opsonisation and cell uptake by human primary macrophages and HepaRG cells of nanoparticles (NPs) formulated from poly(β-malic acid)-b-poly(β-hydroxybutyrate) (PMLA-b-PHB) and poly(β-malic acid)-b-poly(trimethylene carbonate) (PMLA-b-PTMC) diblock copolymers, namely PMLA-b-PHB, PMLA-b-PHB, PMLA-b-PTMC and PMLA-b-PTMC. NPs derived from PMLA-b-PHB and PMLA-b-PTMC do not trigger lactate dehydrogenase release and do not activate the secretion of pro-inflammatory cytokines demonstrating the excellent biocompatibility of these copolymers derived nano-objects. Using a protein adsorption assay, we demonstrate that the binding of plasma proteins is very low for PMLA-b-PHB-based nano-objects, and higher for those prepared from PMLA-b-PTMC copolymers.
View Article and Find Full Text PDF