Advances in neuromodulation technologies hold the promise of treating a patient's unique brain network pathology using personalized stimulation patterns. In service of these goals, neuromodulation clinical trials using sensing-enabled devices are routinely generating large multi-modal datasets. However, with the expansion of data acquisition also comes an increasing difficulty to store, manage, and analyze the associated datasets, which integrate complex neural and wearable time-series data with dynamic assessments of patients' symptomatic state.
View Article and Find Full Text PDFHuman brain networks that encode variation in mood on naturalistic timescales remain largely unexplored. Here we combine multi-site, semi-chronic, intracranial electroencephalography recordings from the human limbic system with machine learning methods to discover a brain subnetwork that correlates with variation in individual subjects' self-reported mood over days. First we defined the subnetworks that influence intrinsic brain dynamics by identifying regions that showed coordinated changes in spectral coherence.
View Article and Find Full Text PDFIn this issue of Neuron, Hultman et al. (2016) find that stress-induced abnormal social behavior reflects aberrant prefrontal regulation of downstream limbic networks. This illustrates how linking aberrant network dynamics to neuropsychiatric disorders may lead to new circuit-based therapeutic interventions.
View Article and Find Full Text PDFUnlabelled: Before the maturation of rod and cone photoreceptors, the developing retina relies on light detection by intrinsically photosensitive retinal ganglion cells (ipRGCs) to drive early light-dependent behaviors. ipRGCs are output neurons of the retina; however, they also form functional microcircuits within the retina itself. Whether ipRGC microcircuits exist during development and whether they influence early light detection remain unknown.
View Article and Find Full Text PDFThe formation of precise connections between retina and lateral geniculate nucleus (LGN) involves the activity-dependent elimination of some synapses, with strengthening and retention of others. Here we show that the major histocompatibility complex (MHC) class I molecule H2-D(b) is necessary and sufficient for synapse elimination in the retinogeniculate system. In mice lacking both H2-K(b) and H2-D(b) (K(b)D(b)(-/-)), despite intact retinal activity and basal synaptic transmission, the developmentally regulated decrease in functional convergence of retinal ganglion cell synaptic inputs to LGN neurons fails and eye-specific layers do not form.
View Article and Find Full Text PDFBefore the onset of sensory transduction, developing neural circuits spontaneously generate correlated activity in distinct spatial and temporal patterns. During this period of patterned activity, sensory maps develop and initial coarse connections are refined, which are critical steps in the establishment of adult neural circuits. Over the last decade, there has been substantial evidence that altering the pattern of spontaneous activity disrupts refinement, but the mechanistic understanding of this process remains incomplete.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2013
Correlated spontaneous activity in the developing nervous system is robust to perturbations in the circuits that generate it, suggesting that mechanisms exist to ensure its maintenance. We examine this phenomenon in the developing retina, where blockade of cholinergic circuits that mediate retinal waves during the first postnatal week leads to the generation of "recovered" waves through a distinct, gap junction-mediated circuit. Unlike cholinergic waves, these recovered waves were modulated by dopaminergic and glutamatergic signaling, and required the presence of the gap junction protein connexin 36.
View Article and Find Full Text PDFDown syndrome (DS) is a developmental disorder caused by a third chromosome 21 in humans (Trisomy 21), leading to neurological deficits and cognitive impairment. Studies in mouse models of DS suggest that cognitive deficits in the adult are associated with deficits in synaptic learning and memory mechanisms, but it is unclear whether alterations in the early wiring and refinement of neuronal circuits contribute to these deficits. Here, we show that early developmental refinement of visual circuits is perturbed in mouse models of Down syndrome.
View Article and Find Full Text PDF