Publications by authors named "Lowell M Smoger"

Differences in patient anatomy are known to influence joint mechanics. Accordingly, intersubject anatomical variation is an important consideration when assessing the design of joint replacement implants. The objective of this study was to develop a computational workflow to perform population-based evaluations of total knee replacement implant mechanics considering variation in patient anatomy and to assess the potential for an efficient sampling strategy to support design phase screening analyses.

View Article and Find Full Text PDF

Complications in the patellofemoral (PF) joint of patients with total knee replacements include patellar subluxation and dislocation, and remain a cause for revision. Kinematic measurements to assess these complications and evaluate implant designs require the accuracy of dynamic stereo-radiographic systems with 3D-2D registration techniques. While tibiofemoral kinematics are typically derived by tracking metallic implants, PF kinematic measurements are difficult as the patellar implant is radiotransparent and a representation of the resected patella bone requires either pre-surgical imaging and precise implant placement or post-surgical imaging.

View Article and Find Full Text PDF

The mechanics of the knee are complex and dependent on the shape of the articular surfaces and their relative alignment. Insight into how anatomy relates to kinematics can establish biomechanical norms, support the diagnosis and treatment of various pathologies (e.g.

View Article and Find Full Text PDF

Patellar resection thickness during total knee replacement (TKR) has been cited as a contributor to patellar fracture, anterior knee pain and quadriceps efficiency; however, optimal thickness required to minimize clinical complications remains unclear. The objectives of the current study were to determine how patellar resection thickness and bone quality impacts patellar bone strain, kinematics, and quadriceps efficiency. A series of specimen-specific finite element models of the knee joint with distributed patellar bone material properties were developed.

View Article and Find Full Text PDF