Publications by authors named "Loveline N Ngu"

Background: In West and Central Africa areas of endemic Loa loa infections overlap with regions of high prevalence of human immunodeficiency virus type 1 (HIV-1) infections. Because individuals in this region are exposed to filarial parasites from birth, most HIV-1 infected individuals invariably also have a history of filarial parasite infection. Since HIV-1 infection both depletes immune system and maintains it in perpetual inflammation, this can hamper Loa loa filarial parasite mediated immune modulation, leading to enhanced loaisis.

View Article and Find Full Text PDF

Introduction: Recombinant Newcastle Disease virus (rNDV) vectored vaccines are safe mucosal applicable vaccines with intrinsic immune-modulatory properties for the induction of efficient immunity. Like all viral vectored vaccines repeated inoculation via mucosal routes invariably results to immunity against viral vaccine vectors. To obviate immunity against viral vaccine vectors and improve the ability of rNDV vectored vaccines in inducing T cell immunity in murine air way we have directed dendritic cell targeted HIV-1 gag protein (DEC-Gag) vaccine; for the induction of helper CD4 T cells to a Recombinant Newcastle disease virus expressing codon optimized HIV-1 Gag P55 (rNDV-L-Gag) vaccine.

View Article and Find Full Text PDF

Introduction: Targeting antigens to dendritic cells (DCs) in vivo via a DC-restricted endocytic receptor, DEC205, has been validated to enhance immunity in several vaccine platforms. Particularly atttractive is selected delivery of proteins to DCs in vivo because it enables proteins to be more immunogenic and provides a cheaper and effective way for repeated immunizations.

Methods: In this study, we tested the efficacy of a single chain antibody to DEC205 (scDEC) to deliver protein antigens selectively to DCs in vivo and to induce protective immunity.

View Article and Find Full Text PDF

Regulatory T (Treg) cells play a key role in dampening excessive immune activation. However, antiretroviral therapy (ART) -naive HIV-1 infection maintains the immune system in a sustained state of activation that could alter both Treg cell surface markers and functions. As Treg cell surface markers are directly linked to their functions the overall objective of this study was to determine how ART-naive HIV infection affects the phenotypic properties of Treg cells.

View Article and Find Full Text PDF