Publications by authors named "Love-Homan L"

Erlotinib has demonstrated poor clinical response rates for head and neck squamous cell carcinoma (HNSCC) to date and the majority of respondents acquire resistance to erlotinib relatively quickly. To elucidate novel pathways involved in erlotinib resistance, we compared the gene expression profiles of erlotinib-resistant (ER) vs. erlotinib-sensitive (ES) HNSCC cell lines.

View Article and Find Full Text PDF

Poor tumor response to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) is a significant challenge for effective treatment of head and neck squamous cell carcinoma (HNSCC). Therefore, strategies that may increase tumor response to EGFR TKIs are warranted in order to improve HNSCC patient treatment and overall survival. HNSCC tumors are highly glycolytic, and increased EGFR signaling has been found to promote glucose metabolism through various mechanisms.

View Article and Find Full Text PDF

Despite the role of epidermal growth factor receptor (EGFR) signaling in head and neck squamous cell carcinoma (HNSCC) development and progression, clinical trials involving EGFR tyrosine kinase inhibitors (TKIs) have yielded poor results in HNSCC patients. Mechanisms of acquired resistance to the EGFR TKI erlotinib was investigated by developing erlotinib-resistant HNSCC cell lines and comparing their gene expression profiles with their parental erlotinib-sensitive HNSCC cell lines using microarray analyses and subsequent pathway and network analyses. Erlotinib-resistant HNSCC cells displayed a significant upregulation in immune response and inflammatory pathways compared to parental cells.

View Article and Find Full Text PDF

EGFR is upregulated in the majority of head and neck squamous cell carcinomas (HNSCC). However, many patients with HNSCC respond poorly to the EGFR inhibitors (EGFRI) cetuximab and erlotinib, despite tumor expression of EGFR. Gene expression analysis of erlotinib-treated HNSCC cells revealed an upregulation of genes involved in MyD88-dependent signaling compared with their respective vehicle-treated cell lines.

View Article and Find Full Text PDF

Unlabelled: Chronic inflammation plays a fundamental role in tumor promotion, migration, and invasion. With the use of microarray profiling, a profound increase was observed for those transcripts involved in proinflammatory signaling in epidermal growth factor receptor (EGFR) inhibitor-treated head and neck squamous cell carcinoma (HNSCC) cells as compared with their respective controls. As such, it was hypothesized that EGFR inhibitor efficacy is offset by the proinflammatory response that these therapeutics conjure in HNSCC.

View Article and Find Full Text PDF

Most head and neck squamous cell carcinomas (HNSCCs) overexpress epidermal growth factor receptor (EGFR) and EGFR inhibitors are routinely used in the treatment of HNSCC. However, many HNSCC tumors do not respond or become refractory to EGFR inhibitors. Autophagy, which is a stress-induced cellular self-degradation process, has been reported to reduce the efficacy of chemotherapy in various disease models.

View Article and Find Full Text PDF

The infectious metacyclic promastigotes of Leishmania protozoa establish infection in a mammalian host after they are deposited into the dermis by a sand fly vector. Several Leishmania virulence factors promote infection, including the glycosylphosphatidylinositol membrane-anchored major surface protease (MSP). Metacyclic Leishmania infantum chagasi promastigotes were treated with methyl-beta-cyclodextrin (MβCD), a sterol-chelating reagent, causing a 3-fold reduction in total cellular sterols as well as enhancing MSP release without affecting parasite viability in vitro.

View Article and Find Full Text PDF

Increased glutathione (GSH) and thioredoxin (Trx) metabolism are mechanisms that are widely implicated in resistance of cancer cells to chemotherapy. The current study determined if simultaneous inhibition of GSH and Trx metabolism enhanced cell killing of human head and neck squamous cell carcinoma (HNSCC) cells by a mechanism involving oxidative stress. Inhibition of GSH and Trx metabolism with buthionine sulfoximine (BSO) and auranofin (AUR), respectively, induced significant decreases in clonogenic survival compared to either drug alone in FaDu, Cal-27 and SCC-25 HNSCC cells in vitro and in vivo in Cal-27 xenografts.

View Article and Find Full Text PDF

The vector-borne protozoan Leishmania infantum chagasi causes minimal inflammation after inoculation into skin but disseminates to cause fatal visceral leishmaniasis. To define the inflammatory response at the parasite inoculation site, we introduced metacyclic L. infantum chagasi promastigotes intradermally into BALB/c mouse ears and studied inflammatory cells over 7 days.

View Article and Find Full Text PDF

Distinct species of Leishmania, a protozoan parasite of the family Trypanosomatidae, typically cause different human disease manifestations. The most common forms of disease are visceral leishmaniasis (VL) and cutaneous leishmaniasis (CL). Mouse models of leishmaniasis are widely used, but quantification of parasite burdens during murine disease requires mice to be euthanized at various times after infection.

View Article and Find Full Text PDF

To characterize the cell surface receptor for dehydroepiandrosterone (DHEA), we synthesized a DHEA analog containing biotin and benzophenone groups (DHEA-BP-Bt). DHEA-BP-Bt was equipotent with DHEA in competing with [(3)H]DHEA for binding to solubilized plasma membranes of bovine aortic endothelial cells (BAEC). Additionally, DHEA-BP-Bt pre-conjugated to avidin and immobilized on agarose, also inhibited plasma membrane binding of [(3)H]DHEA.

View Article and Find Full Text PDF

Both dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS) affect glucose stimulated insulin secretion, though their cellular mechanisms of action are not well characterized. We tested the hypothesis that human physiological concentrations of DHEA alter insulin secretion by an action initiated at the plasma membrane of beta-cells. DHEA alone had no effect on intracellular calcium concentration ([Ca(2+)](i)) in a rat beta-cell line (INS-1).

View Article and Find Full Text PDF

Resistance to murine leishmaniasis correlates with development of a CD4(+) T helper 1 (Th1)-predominant immune response. To determine whether immunostimulatory CpG-containing oligodeoxynucleotides (CpG-ODN), known to promote a Th1 immune response, could provide protection from Leishmania infection, CpG-ODN and freeze-thawed (F/T) Leishmania major were coinjected intradermally into susceptible BALB/c mice. A Leishmania-specific Th1-predominant immune response was induced, and 40% of animals were protected from subsequent challenge with infectious organisms, with 0% protection of animals injected with F/T Leishmania organisms and PBS, F/T organisms and control ODN, or F/T organisms alone.

View Article and Find Full Text PDF

Neonatal murine responses to a panel of conventional vaccines differ qualitatively from adult responses by a particular polarization toward a Th2 pattern and a frequent limitation of the Th1 and CTL responses required for protection against intracellular microorganisms. In contrast, DNA vaccines induce adult-like Th1/CTL neonatal responses against the same vaccine Ags. In this report, we show that this can be related to their content in unmethylated CpG motifs.

View Article and Find Full Text PDF

Unmethylated CpG dinucleotides in particular base contexts (CpG-S motifs) are relatively common in bacterial DNA but are rare in vertebrate DNA. B cells and monocytes have the ability to detect such CpG-S motifs that trigger innate immune defenses with production of Th1-like cytokines. Despite comparable levels of unmethylated CpG dinucleotides, DNA from serotype 12 adenovirus is immune-stimulatory, but serotype 2 is nonstimulatory and can even inhibit activation by bacterial DNA.

View Article and Find Full Text PDF

Vertebrates have evolved innate immune defense mechanisms that recognize and respond to structural patterns that are specific to microbial molecules. One such pattern recognition system is based on unmethylated CpG dinucleotides in particular sequence contexts (CpG motifs); these motifs are common in bacterial DNA but are under-represented ("CpG suppression") and methylated in vertebrate DNA. Mice that are injected with bacterial DNA or synthetic oligodeoxynucleotides (ODNs) containing CpG motifs respond with a rapid production of IL-12 and IFN-gamma.

View Article and Find Full Text PDF

Bacterial DNA causes B cell proliferation, immunoglobulin secretion, and Th1-like cytokine secretion, due to unmethylated CpG dinucleotides in particular base contexts (CpG motifs), which are far more common in bacterial DNA than in vertebrate DNA. Synthetic oligodeoxynucleotides (ODN) containing CpG motifs also trigger immune activation, suggesting possible utility as vaccine enhancers. Mice systemically primed with formalin-inactivated influenza virus mixed with CpG ODN, generated virus-specific serum antibodies at titres approximately seven times higher than mice immunized without CpG; the titres were further increased following an identical second injection.

View Article and Find Full Text PDF

We have generated a human monoclonal antibody with binding specificity for hepatitis C virus (HCV)-specific peptides using peripheral blood lymphocytes isolated from a HCV antibody positive patient. The B-lymphocytes were stimulated with lipopolysaccharide (LPS) for 72 hours prior to the fusion. A recently described high efficiency hypo-osmolar electrofusion technique was employed, allowing generation of a large number of human hybridomas.

View Article and Find Full Text PDF

SCID mice were engrafted with peripheral blood lymphocytes (PBL) derived from persons currently or previously infected with Schistosoma japonicum. After immunization with soluble worm antigenic preparation, the SCID-Hu mice were analyzed for a human immune response. ELISA revealed a low titer of human antibody recognizing soluble egg antigens in 2 of 10 mice.

View Article and Find Full Text PDF

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a potent stimulator of macrophages and neutrophils and plays a role in inflammatory diseases. In this article, we report that mouse brain-derived microvascular smooth muscle cells (SM) and endothelial cells (En) in coculture with splenocytes support the colony proliferation of immature granulocyte-macrophage-like (GM) cells. Unstimulated SM and En cells release GM-CSF as shown by ELISA assay and SM expresses mRNA for GM-CSF by polymerase chain reaction (PCR).

View Article and Find Full Text PDF

The mechanisms for the initiation of immune reactions in the central nervous system are poorly understood. In this report, we describe the presence of intercellular adhesion molecule-1 (ICAM-1) and Lgp 55 (suggested mouse homologue of human intercellular adhesion molecule-2, ICAM-2) on the surface of brain microvessel endothelium (EN) cells and show in vitro induction of ICAM-1 molecules on EN cells with pro-inflammatory cytokines. ICAM-1 expression was detected using flow cytometry analysis with biotinylated anti-ICAM-1 antibody (YN1/1.

View Article and Find Full Text PDF

Adhesion of hematopoietic cells to endothelial (En) cells plays an important role in their migration into extravascular tissue. This report characterizes the adhesion properties of naive splenocytes to syngeneic and allogeneic mouse brain microvascular endothelium isolated from the BALB/c or SJL/j mouse strains. Syngeneic adhesion reaches maximum levels by 60 min at 37 degrees C, but is more pronounced in the BALB/c system (mean adhesion = 10.

View Article and Find Full Text PDF