Publications by authors named "Lovaszi M"

Objective: Extracellular purines such as adenosine triphosphate (ATP), uridine triphosphate (UTP), and uridine diphosphate (UDP) and the ATP degradation product adenosine are biologically active signaling molecules, which accumulate at sites of metabolic stress in sepsis. They have potent immunomodulatory effects by binding to and activating P1 or adenosine and P2 receptors on the surface of leukocytes. Here we assessed the levels of extracellular purines, their receptors, metabolic enzymes, and cellular transporters in leukocytes of septic patients.

View Article and Find Full Text PDF

Extracellular adenosine is a biologically active signaling molecule that accumulates at sites of metabolic stress in sepsis. Extracellular adenosine has potent immunosuppressive effects by binding to and activating G protein-coupled A adenosine receptors (AARs) on the surface of neutrophils. AAR signaling reproduces many of the phenotypic changes in neutrophils that are characteristic of sepsis, including decreased degranulation, impaired chemotaxis, and diminished ability to ingest and kill bacteria.

View Article and Find Full Text PDF

Sepsis is life-threatening organ dysfunction caused by a dysregulated inflammatory and immune response to infection. Sepsis involves the combination of exaggerated inflammation and immune suppression. During systemic infection and sepsis, the liver works as a lymphoid organ with key functions in regulating the immune response.

View Article and Find Full Text PDF

Inosine monophosphate (IMP) is the intracellular precursor for both adenosine monophosphate and guanosine monophosphate and thus plays a central role in intracellular purine metabolism. IMP can also serve as an extracellular signaling molecule, and can regulate diverse processes such as taste sensation, neutrophil function, and ischemia-reperfusion injury. How IMP regulates inflammation induced by bacterial products or bacteria is unknown.

View Article and Find Full Text PDF

Nucleoside triphosphate diphosphohydrolases (NTPDases) are a family of enzymes that hydrolyze nucleotides such as ATP, UTP, ADP, and UDP to monophosphates derivates such as AMP and UMP. The NTPDase family consists of eight enzymes, of which NTPDases 1, 2, 3, and 8 are expressed on cell membranes thereby hydrolyzing extracellular nucleotides. Cell membrane NTPDases are expressed in all tissues, in which they regulate essential physiological tissue functions such as development, blood flow, hormone secretion, and neurotransmitter release.

View Article and Find Full Text PDF

P2Y receptors are G protein-coupled receptors whose physiological agonists are the nucleotides ATP, ADP, UTP, UDP and UDP-glucose. Eight P2Y receptors have been cloned in humans: P2YR, P2YR, P2YR, P2YR, P2YR, P2YR, P2YR and P2YR. P2Y receptors are expressed in lymphoid tissues such as thymus, spleen and bone marrow where they are expressed on lymphocytes, macrophages, dendritic cells, neutrophils, eosinophils, mast cells, and platelets.

View Article and Find Full Text PDF

We tested the hypothesis that the P2X4 purinergic receptor (P2X4) exacerbates ischemic acute kidney injury (AKI) by promoting renal tubular inflammation after ischemia and reperfusion (IR). Supporting this, P2X4-deficient (KO) mice were protected against ischemic AKI with significantly attenuated renal tubular necrosis, inflammation, and apoptosis when compared to P2X4 wild-type (WT) mice subjected to renal IR. Furthermore, WT mice treated with P2X4 allosteric agonist ivermectin had exacerbated renal IR injury whereas P2X4 WT mice treated with a selective P2X4 antagonist (5-BDBD) were protected against ischemic AKI.

View Article and Find Full Text PDF

Toll-like receptors (TLR) 2 and 4 are active in sebaceous glands and play a central role in the development of acne. Still, there is only limited knowledge on their effect on sebocytes. In this work we performed global gene expression profile analysis with functional clustering of the differentially regulated genes of TLR1/2 (PAM3CSK4)- and TLR4 (lipopolysaccharide [LPS])-activated SZ95 sebocytes.

View Article and Find Full Text PDF

The major role of sebaceous glands in mammals is to produce sebum, which coats the epidermis and the hair providing waterproofing, thermoregulation and photoprotection. However, as the need for these functions decreased along the evolutionary changes in humans, a relevant question has been raised: are sebaceous glands and sebum the remnants of our mammalian heritage or do they have overtaken a far more complex role in human skin biology? Trying to provide answers to this question, this review introduces the evolving field of sebaceous immunobiology and puts into the focus the pathways that sebum lipids use to influence the immune milieu of the skin. By introducing possible modifiers of sebaceous lipogenesis and discussing the - human-specific - alterations in composition and amount of sebum, the attribute of sebum as a sensitive tool, which is capable of translating multiple signalling pathways into the dermal micro environment is presented.

View Article and Find Full Text PDF

Background: The main function of sebocytes is considered to be the production of lipids to moisturize the skin. However, it recently became apparent that sebocytes release chemokines and cytokines and respond to proinflammatory stimuli as well as the presence of bacteria.

Objectives: To analyse the functional communication between human sebocytes and T cells.

View Article and Find Full Text PDF

Background: As lipids are known to regulate macrophage functions, it is reasonable to suppose that a sebocyte-macrophage axis mediated by sebum lipids may exist.

Objectives: To investigate if sebocytes could contribute to the differentiation, polarization and function of macrophages with their secreted lipids.

Methods: Oil Red O lipid staining and Raman spectroscopy were used to assess the dermal lipid content and penetration.

View Article and Find Full Text PDF

In addition to producing sebum, sebocytes link lipid metabolism with inflammation at a cellular level and hence, greatly resemble adipocytes. However, so far no analysis was performed to identify and characterize the adipocyte-associated inflammatory proteins, the members of the adipokine family in sebocytes. Therefore, we determined the expression profile of adipokines [adiponectin, interleukin (IL) 6, resistin, leptin, serpin E1, visfatin, apelin, chemerin, retinol-binding protein 4 (RBP4) and monocyte chemoattractant protein 1 (MCP1)] in sebaceous glands of healthy and various disease-affected (acne, rosacea, melanoma and psoriasis) skin samples.

View Article and Find Full Text PDF

Background: Leptin, the adipocyte-secreted hormone that regulates weight, is known to link lipid metabolism with inflammation in various cell types. However, its role in human sebocytes has not yet been investigated.

Objectives: The purpose of this study was to investigate the effects of leptin in human sebaceous gland biology.

View Article and Find Full Text PDF