Covalently acting inhibitors constitute a large and growing fraction of approved small-molecule therapeutics as well as useful tools for a variety of and applications. Here, we aimed to develop a covalent antagonist of CC chemokine receptor 2 (CCR2), a class A GPCR that has been pursued as a therapeutic target in inflammation and immuno-oncology. Based on a known intracellularly binding CCR2 antagonist, several covalent derivatives were synthesized and characterized by radioligand binding and functional assays.
View Article and Find Full Text PDFWe report on the synthesis and biological evaluation of a series of 1,2-diarylimidazol-4-carboxamide derivatives developed as CB receptor antagonists. These were evaluated in a radioligand displacement binding assay, a [S]GTPγS binding assay, and in a competition association assay that enables the relatively fast kinetic screening of multiple compounds. The compounds show high affinities and a diverse range of kinetic profiles at the CB receptor and their structure-kinetic relationships (SKRs) were established.
View Article and Find Full Text PDFWhile equilibrium binding affinities and in vitro functional antagonism of CB1 receptor antagonists have been studied in detail, little is known on the kinetics of their receptor interaction. In this study, we therefore conducted kinetic assays for nine 1-(4,5-diarylthiophene-2-carbonyl)-4-phenylpiperidine-4-carboxamide derivatives and included the CB1 antagonist rimonabant as a comparison. For this we newly developed a dual-point competition association assay with [H]CP55940 as the radioligand.
View Article and Find Full Text PDFComparison between the intended and performed motor action can be expected to occur in the final epoch of a voluntary movement. In search for electrophysiological correlates of this mental process the purpose of the current study was to identify intracerebral sites activated in final epoch of self-paced voluntary movement. Intracerebral EEG was recorded from 235 brain regions of 42 epileptic patients who performed self-paced voluntary movement task.
View Article and Find Full Text PDFThe structure of the human A adenosine receptor has been elucidated by X-ray crystallography with a high affinity non-xanthine antagonist, ZM241385, bound to it. This template molecule served as a starting point for the incorporation of reactive moieties that cause the ligand to covalently bind to the receptor. In particular, we incorporated a fluorosulfonyl moiety onto ZM241385, which yielded LUF7445 (4-((3-((7-amino-2-(furan-2-yl)-[1, 2, 4]triazolo[1,5-a][1, 3, 5]triazin-5-yl)amino)propyl)carbamoyl)benzene sulfonyl fluoride).
View Article and Find Full Text PDFWe report the synthesis and biological evaluation of new 2-amino-4,5-diarylpyrimidines as selective antagonists at the adenosine A receptor. The scaffold they are based upon is a deaza variation of a previously reported collection of 3-amino-5,6-diaryl-1,2,4-triazines, members of which had a subnanomolar affinity but limited selectivity over the A subtype. Initially, similar structure-affinity relationships at the 5-aryl ring were established, and then emphasis was put on increasing selectivity at the hAAR by introducing substituents on the N-position, all the while maintaining a nanomolar affinity.
View Article and Find Full Text PDFThe rapid growth of structural information for G-protein-coupled receptors (GPCRs) has led to a greater understanding of their structure, function, selectivity, and ligand binding. Although novel ligands have been identified using methods such as virtual screening, computationally driven lead optimization has been possible only in isolated cases because of challenges associated with predicting binding free energies for related compounds. Here, we provide a systematic characterization of the performance of free-energy perturbation (FEP) calculations to predict relative binding free energies of congeneric ligands binding to GPCR targets using a consistent protocol and no adjustable parameters.
View Article and Find Full Text PDFThe sodium ion site is an allosteric site conserved among many G protein-coupled receptors (GPCRs). Amiloride 1 and 5-(N,N-hexamethylene)amiloride 2 (HMA) supposedly bind in this sodium ion site and can influence orthosteric ligand binding. The availability of a high-resolution X-ray crystal structure of the human adenosine A2A receptor (hA2AAR), in which the allosteric sodium ion site was elucidated, makes it an appropriate model receptor for investigating the allosteric site.
View Article and Find Full Text PDFGap junctions (GJ) have been implicated in the synchronization of epileptiform activities induced by 4-aminopyrine (4AP) in slices from human epileptogenic cortex. Previous evidence implicated glial GJ to govern the frequency of these epileptiform events. The synchrony of these events (evaluated by the phase unlocking index, PUI) in adjacent areas however was attributed to neuronal GJ.
View Article and Find Full Text PDFObjectives: Accelerated atherosclerosis has emerged as a critical issue in rheumatoid arthritis (RA). There is a need to better understand the link between RA and atherosclerosis. Our aim was to identify parameters associated with the development of subclinical atheroma in a very early arthritis (VErA) cohort.
View Article and Find Full Text PDFThe "Leonetti" law introduced the need for a collegial procedure to approach the decision to limit or stop treatment. Collegiality is not easy in daily professional practice. There are cultural and institutional obstacles, specific to caregivers.
View Article and Find Full Text PDFPurinergic Signal
December 2015
Conventional methods to measure ligand-receptor binding parameters typically require radiolabeled ligands as probes. Despite the robustness of radioligand binding assays, they carry inherent disadvantages in terms of safety precautions, expensive synthesis, special lab requirements, and waste disposal. Mass spectrometry (MS) is a method that can selectively detect ligands without the need of a label.
View Article and Find Full Text PDFWe report the synthesis and biological evaluation of new derivatives of Capadenoson, a former drug candidate that was previously advanced to phase IIa clinical trials. 19 of the 20 ligands show an affinity below 100 nM at the human adenosine A1 receptor (hA1AR) and display a wide range of residence times at this target (from approx. 5 min (compound 10) up to 132 min (compound 5)).
View Article and Find Full Text PDFKv11.1 (hERG) blockers with comparable potencies but different binding kinetics might display divergent pro-arrhythmic risks. In the present study, we explored structure-kinetics relationships in four series of Kv11.
View Article and Find Full Text PDFStructure-affinity relationship (SAR) and structure-kinetics relationship (SKR) studies were combined to investigate a series of biphenyl anthranilic acid agonists for the HCA2 receptor. In total, 27 compounds were synthesized and twelve of them showed higher affinity than nicotinic acid. Two compounds, 6g (IC50=75nM) and 6z (IC50=108nM) showed a longer residence time profile compared to nicotinic acid, exemplified by their kinetic rate index (KRI) values of 1.
View Article and Find Full Text PDFThalamocortical slices are widely used to study thalamocortical relationships and absence epilepsy. However, it is still not known whether (1) intracortical synaptic transmission, in particular neocortical paired-pulse depression (PPD), is maintained in these slices and (2) whether PPD is altered in the Genetic Absence Epilepsy Rat from Strasbourg (GAERS, a model of absence epilepsy for which cortico-thalamic loops are involved). Furthermore, while the involvement of gap junctions (GJ) in the mechanisms leading to epileptiform discharges has been intensively studied, little is known about their effect on intracortical transmission.
View Article and Find Full Text PDFBackground: GABAA receptor (GABAAR) function is maintained by an endogenous phosphorylation mechanism for which the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is the kinase. This phosphorylation is specific to the long intracellular loop I2 of the α1 subunit at two identified serine and threonine residues. The phosphorylation state is opposed by an unknown membrane-bound phosphatase, which inhibition favors the phosphorylated state of the receptor and contributes to the maintenance of its function.
View Article and Find Full Text PDFWe report the synthesis and evaluation of previously unreported 4-amino-6-aryl-5-cyano-2-thiopyrimidines as selective human adenosine A1 receptor (hA1AR) agonists with tunable binding kinetics, this without affecting their nanomolar affinity for the target receptor. They show a very diverse range of kinetic profiles (from 1 min (compound 52) to 1 h (compound 43)), and their structure-affinity relationships (SAR) and structure-kinetics relationships (SKR) were established. When put in perspective with the increasing importance of binding kinetics in drug discovery, these results bring new evidence of the consequences of affinity-only driven selection of drug candidates, that is, the potential elimination of slightly less active compounds that may display preferable binding kinetics.
View Article and Find Full Text PDFIntroduction: Respiratory infections due to Mycoplasma pneumoniae are typically mild and subacute. We report the case of a 40-year-old man hospitalized for acute respiratory distress in the context of an acute infection with Mycoplasma pneumoniae. Radiological and pulmonary function test were consistent with an acute infectious bronchiolitis.
View Article and Find Full Text PDFCardiotoxicity is a side effect that plagues modern drug design and is very often due to the off-target blockade of the human ether-à-go-go related gene (hERG) potassium channel. To better understand the structural determinants of this blockade, we designed and synthesized a series of 40 derivatives of clofilium, a class III antiarrhythmic agent. These were evaluated in radioligand binding and patch-clamp assays to establish structure-affinity relationships (SAR) for this potassium channel.
View Article and Find Full Text PDFElectroencephalographic generalized spike and wave discharges (SWD), the hallmark of human absence seizures, are generated in thalamocortical networks. However, the potential alterations in these networks in terms of the efficacy of the reciprocal synaptic activities between the cortex and the thalamus are not known in this pathology. Here, the efficacy of these reciprocal connections is assessed in vitro in thalamocortical slices obtained from BS/Orl mice, which is a new genetic model of absence epilepsy.
View Article and Find Full Text PDF