Publications by authors named "Louvado A"

Over the past decade, an increasing number of studies have emphasized the importance of the host microbiome in influencing organismal health and development. Aligned with this understanding, our study aimed to investigate the potential association between the turbot () phenotypic traits and the post-larval bacteriome. Turbot post-larvae were sampled from twenty randomly selected production cycles thirty days after hatching (DAH) across multiple post-larval production batches over a three-month period (April to June).

View Article and Find Full Text PDF

In the present study, we developed and validated an experimental life support system (ELSS) designed to investigate coral reef associated bacterial communities. The microcosms in the ELSS consisted of coral reef sediment, synthetic seawater, and specimens of five benthic reef species. These included two hard corals Montipora digitata and Montipora capricornis, a soft coral Sarcophyton glaucum, a zoanthid Zoanthus sp.

View Article and Find Full Text PDF

Dietary supplementation with triglyceride tributyrin (TBT), a butyrate precursor, has been associated with beneficial effects on fish health and improvements in the ability of carnivorous fish to tolerate higher levels of plant-based protein. In this study, we aimed to investigate the effects of a plant-based diet supplemented with TBT on the structural diversity and putative function of the digesta-associated bacterial communities of rainbow trout (Oncorhynchus mykiss). In addition to this, we also assessed the response of fish gut digestive enzyme activities and chyme metabolic profile in response to TBT supplementation.

View Article and Find Full Text PDF

Sponges are abundant components of coral reefs known for their filtration capabilities and intricate interactions with microbes. They play a crucial role in maintaining the ecological balance of coral reefs. Humic substances (HS) affect bacterial communities across terrestrial, freshwater, and marine ecosystems.

View Article and Find Full Text PDF

The amount of available light plays a key role in the growth and development of microbial communities. In the present study, we tested to what extent sponge-associated prokaryotic communities differed between specimens of the sponge species Cinachyrella kuekenthali and Xestospongia muta collected in dimly lit (caves and at greater depths) versus illuminated (shallow water) habitats. In addition to this, we also collected samples of water, sediment, and another species of Cinachyrella, C.

View Article and Find Full Text PDF
Article Synopsis
  • The research investigates how domestication influences the endophytic microbiome and metabolome of the plant Salicornia europaea, comparing wild and cultivated plants.
  • Using advanced techniques like high-throughput sequencing and mass spectrometry, the study finds significant differences in bacterial communities and metabolite profiles between wild and crop plants.
  • Wild plants have a richer diversity of certain beneficial bacteria and more carbohydrates, while crop plants show higher levels of fatty acids and potential indicators of disease, highlighting the role of microbial populations in plant adaptation.
View Article and Find Full Text PDF

Live feed enrichments are often used in fish larvicultures as an optimized source of essential nutrients to improve larval growth and survival. In addition to this, they may also play an important role in structuring larval-associated microbial communities and may help improve their resistance to diseases. However, there is limited information available on how larval microbial communities and larviculture water are influenced by different live feed enrichments.

View Article and Find Full Text PDF

Recent studies have shown that the addition of non-viable microbial biomass or their components (postbiotics) to fish feed can modulate the gut microbiome and positively influence fish health in aquaculture systems. However, no information was hitherto available on the use of non-viable microbial biomass to manipulate aquaculture bacterioplankton communities. To fill this gap, here we used an in vitro model to assess the effects of heat-killed biomasses of an antagonistic strain Pseudoalteromonas rubra SubTr2 and a non-antagonist strain Escherichia coli DH5α on bacterioplankton communities of a recirculating aquaculture system (RAS).

View Article and Find Full Text PDF

Aquaculture is the fastest-growing sector in food production worldwide. For decades, research on animal physiology, nutrition, and behavior established the foundations of best practices in land-based fish rearing and disease control. Current DNA sequencing, bioinformatics, and data science technologies now allow deep investigations of host-associated microbiomes in a tractable fashion.

View Article and Find Full Text PDF

Background: Early antiretroviral therapy (ART) is necessary for HIV epidemic control and depends on early diagnosis and successful linkage to care. Since 2014, annual household-based HIV testing and counseling and linkage services have been provided through the Chókwè Health and Demographic Surveillance System for residents testing HIV positive in this high HIV-burden district.

Methods: District-wide Test and Start [T&S, ART for all people living with HIV (PLHIV)] began in August 2016, supported by systematic interventions to improve linkage to care and treatment.

View Article and Find Full Text PDF

Dietary glycerol supplementation in aquaculture feed is seen as an alternative and inexpensive way to fuel fish metabolism, attenuate metabolic utilization of dietary proteins and, subsequently, reduce nitrogen excretion. In this study, we evaluated the impact of dietary glycerol supplementation on nitrogen excretion of European seabass (Dicentrarchus labrax) and its effects on metabolite profile and bacterial community composition of gut digesta. These effects were evaluated in a 60-day trial with fish fed diets supplemented with 2.

View Article and Find Full Text PDF

Aim: To evaluate the interactive effects of oil contamination and chemical dispersant application on bacterial composition and sediment remediation of an estuarine port environment.

Methods And Results: A multifactorial controlled microcosm experiment was set up using sediment cores retrieved from an estuarine port area located at Ria de Aveiro lagoon (Aveiro, Portugal). An oil spill with and without chemical dispersant addition was simulated.

View Article and Find Full Text PDF

Ocean acidification may exacerbate the environmental impact of oil hydrocarbon pollution by disrupting the core composition of the superficial (0-1 cm) benthic bacterial communities. However, at the subsurface sediments (approximately 5 cm below sea floor), the local biochemical characteristics and the superjacent sediment barrier may buffer these environmental changes. In this study, we used a microcosm experimental approach to access the independent and interactive effects of reduced seawater pH and oil contamination on the composition of subsurface benthic bacterial communities, at two time points, by 16S rRNA gene-based high-throughput sequencing.

View Article and Find Full Text PDF

The present study assesses the diversity and composition of sediment bacterial and microeukaryotic communities from deep-sea mud volcanoes (MVs) associated with strike-slip faults in the South-West Iberian Margin (SWIM). We used a 16S/18S rRNA gene based pyrosequencing approach to characterize and correlate the sediment bacterial and microeukaryotic communities from MVs with differing gas seep regimes and from an additional site with no apparent seeping activity. In general, our results showed significant compositional changes of bacterial and microeukaryotic communities in sampling sites with different seepage regimes.

View Article and Find Full Text PDF

Endocrine disrupting compounds (EDCs) are considered as high research priority being a source of potential adverse ecological health effects in environmental waters. 17β-Estradiol (E2), a recalcitrant natural estrogen, is typically encountered in wastewater treatment plants (WWTPs) at levels ranging 10-30ngL in the influent flow and 1-3ngL in the effluent flow. The exposure to even extremely low concentrations of E2 may interfere with the normal function of the endocrine system of organisms.

View Article and Find Full Text PDF

Recalcitrant polycyclic aromatic hydrocarbons (PAHs) released into seawater end up in the deep sea sediments (DSSs). However, their fate here is often oversimplified by theoretical models. Biodegradation of PAHs in DSSs, is assumed to be similar to biodegradation in surface habitats, despite high hydrostatic pressures and low temperatures that should significantly limit PAH biodegradation.

View Article and Find Full Text PDF

The potential of estuarine microniches as reservoirs of biosurfactant-producing bacteria was evaluated by testing different combinations of inocula and hydrophobic carbon sources. Selective cultures using diesel, petroleum, or paraffin as hydrophobic carbon sources were prepared and inoculated with water from the surface microlayer, bulk sediments, and sediment of the rhizosphere of Halimione portulacoides. These inocula were compared regarding the frequency of biosurfactant-producing strains among selected isolates.

View Article and Find Full Text PDF

Bioremediation efforts often rely on the application of surfactants to enhance hydrocarbon bioavailability. However, synthetic surfactants can sometimes be toxic to degrading microorganisms, thus reducing the clearance rate of the pollutant. Therefore, surfactant-resistant bacteria can be an important tool for bioremediation efforts of hydrophobic pollutants, circumventing the toxicity of synthetic surfactants that often delay microbial bioremediation of these contaminants.

View Article and Find Full Text PDF