Publications by authors named "Lourdes Soriano"

Article Synopsis
  • Agricultural waste, like corn straw, can be utilized to produce energy and potentially reused as ash in cement and mortar manufacturing.
  • This study specifically examines the auto-combustion of corn straw, analyzing the properties of the resulting corn straw ash (CSA) using advanced techniques.
  • The findings indicate that replacing 10% of Portland cement with CSA in mortars shows similar compressive strength to control samples, suggesting that auto-combustion could benefit low-income communities by reducing reliance on traditional cement and effectively managing waste.
View Article and Find Full Text PDF

Global circular economy drives the development of sustainable alkali activated materials (AAM) for use as construction material from industrial by-products and wastes. The assessment of the potentially hazardous substances release of these new material combinations into the soil and groundwater over time is essential. In this study, the aim is the environmental assessment of three AAMs based on blast furnace slag (BFS), activated with almond shell biomass ash (ABA) as potassium source and three solid sources of silica from the agricultural industry, rice husk ash (RHA), spent diatomaceous earth (SDE) and bamboo leaf ash (BLA), using European horizontal leaching tests proposed for construction materials, for monolithic form, Dynamic Surface Leaching Test (DSLT) and for granular form, Up-flow Percolation Test and the Compliance leaching test, by simulating different scenarios of their entire life cycle.

View Article and Find Full Text PDF

Rice husk ash (RHA) is agricultural waste with high silica content that has exhibited proven technical feasibility as a pozzolanic material since the 1970s. Notwithstanding, its use in mortars and concrete is limited by the standards currently utilized in some countries where RHA production is high and the aforementioned pozzolanic material is not standardized. This is the case in Spain, one of the main rice producers in Europe.

View Article and Find Full Text PDF

Supplementary cementitious materials (SCMs) have been used in the construction industry to mainly reduce the greenhouse gas emissions associated with Portland cement. Of SCMs, the petrochemical industry waste known as fluid catalytic cracking catalyst residue (FCC) is recognized for its high reactivity. Nevertheless, the binders produced using SCMs usually present low mechanical strength at early curing ages.

View Article and Find Full Text PDF

The aims of this work were to evaluate the reactivity of sugarcane straw ashes (SCSA) burned under controlled conditions and to analyze their reactivity in blended cement and hydrated lime pastes by thermogravimetric analysis (TG) and calorimetry. Four different ashes were produced, and burned at 600 °C, 700 °C, 800 °C and 900 °C (SCSA600, SCSA700, SCSA800 and SCSA900, respectively). These ashes were characterized by X-ray fluorescence spectroscopy, X-ray diffractometry, particle size distribution by laser diffraction and specific area surfaces to assess their potential interest in the partial replacement of inorganic binders (Portland cement (OPC) and hydrated lime).

View Article and Find Full Text PDF

The use of geopolymers has revolutionized research in the field of construction. Although their carbon footprint is often lower than that of traditional mortars with Portland cement, activators such as sodium silicate have a high environmental impact in the manufacturing of materials. Employing alternative alkali sources to produce geopolymers is necessary to obtain materials with a lower carbon footprint.

View Article and Find Full Text PDF

The aim of this study was to use the electrical impedance spectroscopy technique (IS) to carry out a systematic study on the mechanism of metakaolin geopolymerization for up to 7 curing days. The study was developed on two batches of metakaolin (MK), and their reaction processes were compared. Interpretative fundamental elements were developed based on the effective electrical conductivity curves regarding the metakaolin geopolymerization.

View Article and Find Full Text PDF

Large amounts of waste are derived not only from construction processes, but also the demolition of existing buildings. Such waste occupies large volumes in landfills, which makes its final disposal difficult and expensive. Reusing this waste type is generally limited to being employed as filler material or recycled aggregate in concrete, which limits its valorisation.

View Article and Find Full Text PDF

Three-dimensional printed concrete (3DPC) is a relatively recent technology that may be very important in changing the traditional construction industry. The principal advantages of its use are more rapid construction, lower production costs, and less residues, among others. The choice of raw materials to obtain adequate behavior is more critical than for traditional concrete.

View Article and Find Full Text PDF

This work studies the possibility of using geopolymer materials to enhance the mechanical and durability properties of hydrated lime-pozzolan mixtures, which gave rise to the so-called "hybrid systems". Two different waste types were used as pozzolan in the lime-pozzolan system: rice husk ash (RHA) and spent fluid catalytic cracking (FCC). The geopolymer fabricated with FCC was activated with commercial reagents (NaOH and NaSiO), and also with alternative sources of silica to obtain a lower carbon footprint in these mixtures.

View Article and Find Full Text PDF

This work studies the possibility of incorporating different proportions of glass powder from the waste glass (rejected material called fine cullet) produced during the glass recycling process into the manufacturing of mortar and concrete. For this purpose, the material is characterized by its chemical composition and pozzolanic activity, and the shape and size of its particles are studied. It is then incorporated as a substitute for cement into the manufacturing of mortar and concrete at 25% and 40% of cement weight, and its effect on setting times, consistency, and mechanical strength is analyzed.

View Article and Find Full Text PDF

Resource recovery from waste is one of the most important ways to implement the so-called circular economy, and the use of alkali activated materials can become an alternative for traditional PC-based materials. These types of materials are based on waste resources involving a lower carbon footprint and present similar or high properties and good durability compared to that Portland cement (PC). This research work proposes using new waste generated in different types of industries.

View Article and Find Full Text PDF

Many agrowastes are being used for energy production by combustion in power plants. This process generates huge amounts of ash, which has a potential pozzolanic activity for blending with Portland cement or hydrated lime. In this paper, the ash obtained from elephant grass (Pennisetum purpureum Schum var.

View Article and Find Full Text PDF

Agrowastes are produced worldwide in huge quantities and they contain interesting elements for producing inorganic cementing binders, especially silicon. Conversion of agrowastes into ash is an interesting way of yielding raw material used in the manufacture of low-CO2 binders. Silica-rich ashes are preferred for preparing inorganic binders.

View Article and Find Full Text PDF

Blast furnace slag (BFS)/sugar cane bagasse ash (SCBA) blends were assessed for the production of alkali-activated pastes and mortars. SCBA was collected from a lagoon in which wastes from a sugar cane industry were poured. After previous dry and grinding processes, SCBA was chemically characterized: it had a large percentage of organic matter ( 25%).

View Article and Find Full Text PDF

Five silica fumes from different manufacturers were subjected to ultrasonic treatment in order to decrease particle agglomeration and improve particle dispersion. The effectiveness of the sonication was observed as a reduction in particle size distribution of sonicated silica fume (SSF) compared to non-sonicated silica fume. SSF was added to Portland cement, and then the hydrated paste was analysed by thermogravimetric analyses (TGA/DTG) and scanning electron microscopy (SEM/EDX).

View Article and Find Full Text PDF